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Abstract
A weighing matrix W = (wi,j ) is a square matrix of order n and entries wi,j in {0, ±1}
such that WWT = kIn. In his thesis, Strassler gave a table of existence results for circulant
weighing matrices with n ≤ 200 and k ≤ 100. In the latest version of Strassler’s table given
by Tan, there are 34 open cases remaining. In this paper we give nonexistence proofs for 12
of these cases, report on preliminary searches outside Strassler’s table, and characterize the
known proper circulant weighing matrices.
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1 Introduction

A weighing matrix W = W(n, k) with weight k is a square matrix of order n with entries
wi,j in {-1, 0, +1} such that WWT = kIn where WT is the transpose of W and In is the
n × n identity matrix.

A circulant weighing matrix C = CW(n, k) is a weighing matrix in which every row
except for the first is a right cyclic shift of the previous row. Let P be the set of locations
with a +1 in the first row, and N be the locations with a −1. Then |P | + |N | = k.
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The following facts are well known:

i. k = s2 for some positive integer s

ii. |P | = s2+s
2

iii. |N | = s2−s
2

|P | and |N | are chosen by convention, since −C is also a circulant weighing matrix. For
further information on weighing matrices, we refer the reader to [1–3].

In his 1997 thesis [4], Strassler gave a table of known results on such matrices with
n ≤ 200 and k ≤ 100. Over the years, many open cases in his table have been resolved. In
Tan’s 2018 version of the table [5], there are 34 open cases remaining. In this paper, we will
show that no CW(n, k) exists for twelve of those cases.

2 Group rings andmultipliers

It is convenient to think of circulant weighing matrices CW(n, k) as elements of a group
ring. Let R be a commutative ring with identity iR and G be a finite multiplicatively written
group of order n. Let R[G] = {∑g∈G agg | ag ∈ R} denote the group ring of G over R.

Definition 2.1 For an integer t and A = ∑
g∈G agg, define A(t) = ∑

g∈G agg
t .

In this paper, we will be working with Z[Zn], the group ring of the cyclic group Zn

of order n over Z, the ring of integers. A CW(n, k) is an element A of Z[Zn] with all
coefficients in {0,±1} such that

AA(−1) = k. (1)
If the coefficients of A are in {0,±1, ±2, . . . , ±m}, then we will call it an integer circulant
weighing matrix, denoted ICWm(n, k).

Representing elements of Zn as {1, X,X2, . . . , Xn−1} modulo (Xn − 1), we may think
of CW(n, k) as a polynomial in Z[X]/(Xn − 1). For example, a circulant weighing matrix
CW(7, 4) ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− + + 0 + 0 0
0 − + + 0 + 0
0 0 − + + 0 +
+ 0 0 − + + 0
0 + 0 0 − + +
+ 0 + 0 0 − +
+ + 0 + 0 0 −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is equivalent to
A(X) = −1 + X + X2 + X4.

The group ring element is given by the first row of the matrix, and (1) applies both the the
matrix and group ring element.

We will generally leave the mod(Xn − 1) implicit. For any integer s, XsA(X) is an
equivalent CW, a cyclic shift of A.

For an integer t , A(t) = A(Xt) denotes the image of A under the group homomor-
phism x → xt , extended linearly to all of Z[Zn]. If gcd(t, n) = 1, then this map is an
automorphism. If gcd(t, n) = d, then A(t) is an ICWd(n/d, k).

A prime p is called self-conjugate modulo n if there is an integer i with

pi ≡ −1 mod v(n),
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where v(n) is the largest divisor of n relatively prime to p. The following result of Lander,
given in this form for group rings in [6], will be used below.

Theorem 2.2 For an abelian group G of order n, if A ∈ Z[G] satisfies
AA(−1) ≡ 0 mod p2a,

for a positive integer a and prime p, and p is self-conjugate mod n then,

A ≡ 0 mod pa .

Next, we will discuss multipliers.

Definition 2.3 Let G be a finite abelian group of order n and D be a subset of G. Let t be
an integer relatively prime to n. If D(t) = Dg for some g in G, then t is called a multiplier
of D.

The following theorem is well-known; see, for example, [2]:

Theorem 2.4 Let A be a CW(n, k), where k = p2r is a prime power, and gcd(n, k) = 1.
Then p is a multiplier of A. Furthermore, p fixes some translate of A.

We will frequently use this theorem. When a CW(n, k) has a multiplier p, then some
translate of it is fixed by the group generated by p mod n, and so P and N must both be
unions of orbits of Zn under the action of multiplying by p. For example, 2 is a multiplier
of CW(7, 4), and the presentation given above is fixed by it:

A(2) = A(X2) = −1 + X2 + X4 + X8 ≡ A (mod X7 − 1).

The orbits of 2 mod 7 are {0}, {1, 2, 4} and {3, 5, 6}, so the only possibilities are N = {0}
and P being one of the other orbits, both of which give (equivalent) CW(7, 4)s. Needing
to exhaust unions of orbits instead of arbitrary subsets will often transform an infeasible
search into a feasible one, and allow us to handle the cases in this paper by hand.

Let n = dm, with d,m > 1. We may reduce A = ∑n−1
i=0 aiX

i modulo Xm − 1 to get

B =
m−1∑

i=0

⎛

⎝
d−1∑

j=0

ai+jm

⎞

⎠Xi =
m−1∑

i=0

biX
i .

The bi’s are called the intersection numbers. They have been extensively used for study-
ing the existence of difference sets, circulant weighing matrices ([4] called it folding), and
supplementary difference sets [7].

Lemma 2.5 For an ICW(n, k) circulant weighing matrix A as above,

m−1∑

i=0

bi = s, (2)

m−1∑

i=0

b2i = s2 = k, (3)

where |bi | ≤ d .
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Note that if d ≤ s, then for any 0 ≤ i < m, these equations have a trivial solution bi = s

and bj = 0 for i �= j . If Theorem 2.2 applies with pa = s, then the trivial solutions are the
only ones.

B(X) is an ICWd(m,w). If A(X) is equivalent to B(Xd) for any d > 1, then A is called
a multiple of B(X). If A(X) is not a multiple of any CW , then it is called proper.

In this paper, we will consider possible circulant weighing matrices in Zn = Zd × Zm,
where d and m are relatively prime. If p is a multiplier for a CW(n, k) matrix A, then we
may assume that a translate of A is fixed by the group 〈p〉 (mod n), and so P and N must
each be the union of orbits of the multiplier group. This applies to the folded versions in Zd

and Zm as well, so we may use Lemma 2.5 to get information about what orbits are in P

and N in the two subgroups, and from that limit the possibilities for orbits in the full group.
For any of the cases in Strassler’s table, Equations (2) and (3) will be small enough that

we can solve them either by hand or with a short computer exhaust. The bulk of each proof
will show that none of those pairs of solutions corresponds to a circulant weighing matrix.

Since this method will be used repeatedly, we will formalize it here. Let σ and τ be
projections from Zn to Zd and Zm, respectively. Let the orbits of Zn be

N1,N2, . . .Nw,

the orbits of Zd be
D1,D2, . . .Du,

and the orbits of Zm be
M1,M2, . . .Mv .

Bij = {B1
ij ,B2

ij , . . . ,Bl
ij } will denote the set of orbits N which map to orbits Di and Mj

under σ and τ . This information may be represented as a matrix shown in Table 1, where
the row and column sums r = (r1, . . . , ru) and c = (c1, . . . , cv) are the sum of the orders
of the orbits in that line in P minus the sums of the orders in N . The intersection numbers
of Lemma 2.5 are ri/|Di | and cj /|M|.

To illustrate the method that will be used throughout this paper, consider a CW(63, 16).
By Theorem 2.4 2 is a multiplier, and the orbits of Z63 are shown in Table 2, where each
orbit is represented by its generator in the appropriate group, and the subscript gives the size
of the orbit. A CW(63, 16) is given in Table 3 where the sets in P are in bold. Note that
the intersection numbers (4, 0, 0) and (1, 2, −1) satisfy Lemma 2.5. Also, by Theorem 2.2
with n = 9 and p = 2 we have the intersection numbers mod 9 must be trivial. There is one
other inequivalent solution, which has the same intersection numbers.

In the next section we will use this framework to demonstrate that various CW(n, k) do
not exist. For small cases this can be done by hand. A computer search dealing with larger
cases will be discussed in Section 5.

Table 1 Orbit table for CW(n, k)

Zm

Zd M1 M2 . . . Mv

D1 B1,1 B1,2 B1,v r1

D2 B2,1 B2,2 B2,v r2

...
. . .

Du Bu,1 Bu,2 Bu,v ru

c1 c2 cv
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Table 2 CW(63, 42) orbits

Z7

Z9 〈0〉1 〈1〉3 〈3〉3
〈0〉1 〈0〉1 〈9〉3 〈27〉3
〈1〉6 〈7〉6 〈1〉6 〈11〉6 〈23〉6 〈5〉6 〈13〉6 〈31〉6
〈3〉2 〈21〉2 〈15〉6 〈3〉6

3 Nonexistence results

In this section, we present proofs of nonexistence for several of the open cases in Strassler’s
table. All these proofs may be done by hand, without computer assistance. In later sections,
we will look at more difficult parameters, where more substantial computation is needed.

Proposition 3.1 A CW(110, 81) does not exist.

Proof Suppose a CW(110, 81) exists. Then |P | = 45, |N | = 36 and 3 is its multiplier.
Note that Z110 = Z11 × Z10. The Z11 orbits under the multiplier action x → 3x are:

{0}
{1, 3, 9, 5, 4}
{2, 6, 7, 10, 8}

The Z10 orbits under the multiplier action x → 3x are:

{0}
{5}

{1, 3, 9, 7}
{2, 6, 8, 4}

Since 3 is self-conjugate mod 10, by Theorem 2.2 the intersection numbers mod 10 are
trivial. Without loss of generality we may take the first row sum to be 9, and the others zero
(there is no way to get the last two rows to sum to zero, and if the second row sum was 9 we
can shift each element of P and N by 55). The only way for the first row to sum to 9 is for
〈0〉1 to be in N , and 〈20〉5 and 〈10〉5 to be in P .

Applying Lemma 2.5, we get equations

y1 + 5(y2 + y3) = 9 (4)

Table 3 Solution representing a CW(63, 42)

Z7

Z9 〈0〉1 〈1〉3 〈3〉3
〈0〉1 〈0〉1 〈27〉3 4

〈1〉6 〈11〉6 〈31〉6 0

〈3〉2 0

1 3 · (2) 3 · (−1)
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and
y2
1 + 5(y2

2 + y2
3 ) = 81 (5)

for Z11. Since for each row the size of the first column orbit is different from the other two,
the other row sums being zero means that their first column orbit cannot be in P or N , so
we must have y1 = −1. But (4) and (5) have no integer solutions with y1 = −1.

Proposition 3.2 Suppose m is an integer for which gcd(33,m) = 1, and 3 is self-conjugate
modulo m. Then no CW(11 · m, 81) exists.

Proof For any n = 11 · m, we may make a table of orbits similar to Table 4. Since
gcd(3,m) = 1, 3 is a multiplier. The orbits mod 11 will be the same, and since 3 is self-
conjugate mod m, by Theorem 2.2 the intersection numbers mod m must be trivial. As
before the first row sum must be 9, so that again the 〈0〉1 orbit must be in N . All the other
row sums are 0, and since each row has orbits of size o, 5o and 5o, that means that the orbit
in the first column cannot be in P or N . Therefore y1 in (4) and (5) would need to be −1,
and those equations still have no such integer solutions.

This rules out many such parameters, one of which is in Strassler’s table and was open:

Corollary 3.3 A CW(154, 81) does not exist.

The same method, with different orbits, may be used for other parameters.

Proposition 3.4 A CW(130, 81) does not exist.

Proof The orbit information is given in Table 5. While 3 is self-conjugate modulo 10, the
orbit structure is different, so the argument is not quite as straightforward.

Without loss of generality, by Theorem 2.2 we take the first row sum to be 9, so three of
the four 3-orbits must be in P . The other row sums are 0, so the first column can never be
included, and the other four columns for each row must have the same number of orbits in
N and P . No orbits can come from the second row, since N has order 36 ≡ 0 (mod 12),
and all the other orbits are 12-orbits.

The Z13 equations from Lemma 2.5 are:

y1 + 3y2 + 3y3 + 3y4 + 3y5 = 9 (6)

Table 4 Orbit information for CW(110, 81)

Z11

Z10 〈0〉1 〈1〉5 〈2〉5
〈0〉1 〈0〉1 〈20〉5 〈10〉5 9

〈5〉1 〈55〉1 〈5〉5 〈35〉5 0

〈1〉4 〈11〉4 〈3〉20 〈7〉20 0

〈2〉4 〈22〉4 〈4〉20 〈2〉20 0

y1 5y2 5y3
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Table 5 Orbit information for CW(130, 81)

Z13

Z10 〈0〉1 〈1〉3 〈2〉3 〈4〉3 〈7〉3
〈0〉1 〈0〉1 〈40〉3 〈70〉3 〈10〉3 〈20〉3 9

〈5〉1 〈65〉1 〈35〉3 〈5〉3 〈25〉3 〈85〉3 0

〈1〉4 〈13〉4 〈3〉12 〈19〉12 〈17〉12 〈7〉12 0

〈2〉4 〈26〉4 〈14〉12 〈2〉12 〈4〉12 〈8〉12 0

y1 3y2 3y3 3y4 3y5

and
y2
1 + 3y2

2 + 3y2
3 + 3y2

4 + 3y2
5 = 81. (7)

The only solutions with y1 = 0 are permutations of (0, 3, 3, −3, 0). But there is no way
to get a column sum of −3 with zero or one 3-orbits from the first row in P and some
number of 12-orbits in P or N .

Proposition 3.5 A CW(143, 81) does not exist.

Proof Suppose a CW(143, 81) exists; |P | = 45, |N | = 36 and 3 is its multiplier. Note that
Z143 = Z11 × Z13. The Z11 orbits under the multiplier action x → 3x are:

{0}
{1, 3, 9, 5, 4}
{2, 6, 7, 10, 8}

The Z13 orbits under the multiplier action x → 3x are:

{0}
{1, 3, 9}
{2, 6, 5}

{4, 12, 10}
{7, 8, 11}

Table 6 gives the orbit information.

Table 6 Orbit information for CW(143, 81)

Z13

Z11 〈0〉1 〈1〉3 〈2〉3 〈4〉3 〈7〉3
〈0〉1 〈0〉1 〈22〉3 〈44〉3 〈77〉3 〈11〉3 x1

〈1〉5 〈26〉5 〈1〉15 〈5〉15 〈4〉15 〈20〉15 5x2
〈2〉5 〈13〉5 〈29〉15 〈2〉15 〈10〉15 〈7〉15 5x3

x 3y0 3y1 3y2 3y3
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Unfortunately, 3 is not self-conjugate modulo 11 or 13, so we need to work a bit harder.
Applying Lemma 2.5, we get equations

y1 + 3(y2 + y3 + y4 + y5) = 9

y2
1 + 3(y2

2 + y2
3 + y2

4 + y2
5 ) = 81

for Z13, and

x1 + 5(x2 + x3) = 9

x2
1 + 5(x2

2 + x2
3 ) = 81

for Z11.
For Z11 the integer solutions are (9, 0, 0), (4, 3, −2), and (−6, 3, 0) (together with

swapping the second and third coordinates).
The first one is impossible, since it forces three size-3 orbits in the first row to be in P ,

leaving 36 remaining elements, but the orbits in the other rows all have size a multiple of 5.
Similarly for the second solution, the first row sum being 4 means that we either have orbits
in the first row contributing 4 (the size-1 and a size-3 orbit in P , and none in N ) or 7 (the
size-1 and two size-3 orbits in P , and the remaining orbit in N ), but again the number of
remaining elements is not a multiple of 5.

Finally for (x1, x2, x3) = (−6, 3, 0), the first row is forced to have two size-3 orbits in N

and none in P , or three in N and one in P . The latter is impossible, since it would leave 42
elements in P and 27 in N to be covered by the orbits in the other rows, all of which have
size a multiple of 5. The former leaves 45 elements of P and 30 of N for the other rows,
and so one row must have two size-15 orbits in P and one in N , while the other has one of
each. The size-5 orbits cannot be used, so x must be 0.

There are three solutions to the Z13 equations with y1 = 0: (0, 3, 3, 0, −3),
(0, 4, 1, 1, −3), and (0, 5, 0, −1, −1), as well as permutations of the last four coordinates.

The first two may be quickly eliminated; in both cases we need a column sum equal
to −9, and it is not possible to achieve this. However, the third solution can be satisfied.
Table 7 shows a selection satisfying all the equations, although the orbits do not form a
CW(143, 81).

To finish the proof, consider the orbits in Z13. There are six ways to pick two of the four
columns with column sum −3, and then two ways to pick which of the other columns has

Table 7 A choice of orbits satisfying the equations (not a CW(143, 81)). P orbits are in bold

Z13

Z11 〈0〉1 〈1〉3 〈2〉3 〈4〉3 〈7〉3
〈0〉1 〈44〉3 〈77〉3 −6

〈1〉5 〈1〉15 〈5〉15 〈4〉15 15

〈2〉5 〈2〉15 〈10〉15 0

0 15 −3 −3 0
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sum 15. For each of these 12 choices, we can check that (1) is not satisfied. For example,
the choices in Table 7 give

A(X) ≡ 5X〈1〉 − X〈2〉 − X〈4〉 (mod X13 − 1),

where X〈a〉 = ∑
b∈〈a〉 Xb for the orbit 〈a〉 in Z13, and we find

A(X)A(X−1) ≡ 81 + 18
(
X〈1〉 + X〈2〉 − X〈4〉 + X〈7〉) (mod X13 − 1) �= 81.

Finally, we have:

Proposition 3.6 A CW(143, 36) does not exist.

Proof Since k is not a prime power, Theorem 2.4 does not apply. However, a more general
multiplier theorem ([8], Theorem 2.4) shows that 3 is still a multiplier, and so the orbit
information is exactly the same as in Table 6.

The table is the same, but the equations are

y1 + 3(y2 + y3 + y4 + y5) = 6

y2
1 + 3(y2

2 + y2
3 + y2

4 + y2
5 ) = 36

for Z13, and

x1 + 5(x2 + x3) = 6

x2
1 + 5(x2

2 + x2
3 ) = 36

for Z11.
The solutions to the Z11 equations are (6, 0, 0), (−4, 2, 0) and (−4, 0, 2). The solutions

to the Z13 equations are (6, 0, 0, 0, 0) and (0, 2, 2, −2, 0) and permutations of the last four
coordinates.

But none of the Z11 and Z13 are compatible; (6, 0, 0) would force two or more of the
size-3 orbits in the first row to be in P . The corresponding columns would then have weight
3 (mod 15), which does not fit with any of the Z13 solutions. Similarly, (−4, 2, 0) or
(−4, 0, 2) would force the 〈0〉1 orbit to be in N , so that the first column would have weight
4 (mod 5), which is not compatible with any of the Z13 solutions.

4 Contracted circulant weighingmatrices

For most of the remaining open cases in Strassler’s table, we do not have any multipliers
from Theorem 2.4, either because k is composite or not relatively prime to n.

The following theorem, due to McFarland [9], will sometimes allow us to obtain
multipliers in these cases:
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Theorem 4.1 Let M be an ICWd(m, k) with gcd(m, k) = 1. Let k have prime factorization
p

e1
1 · · · pes

s . If t is an integer for which there are fi for i = 1, 2, . . . , s with

t ≡ p
fi

i (mod m), (8)

then t is a multiplier of M .

Thus for A a putative CW(n, k), we may apply this theorem to A(d) for d = gcd(n, k).
If such a t exists, we will call it a d-multiplier for A if we can find a t satisfying (8), and we
may apply the methods of the previous section.

Proposition 4.2 A CW(132, 81) does not exist.

Proof By Theorem 4.1, 3 is a multiplier for an ICW3(44, 81). Table 8 gives the orbit infor-
mation. Since this is an ICW, any of the orbits may occur with a coefficient up to 3 in
absolute value.

Since 3 is self-conjugate modulo 4, by Theorem 2.2 the row sums must be (9, 0, 0).
This means that 〈0〉1 has a coefficient of −1, with the other orbits in the first row having
coefficients (1, 1), (2, 0), or (3, −1) in either order.

The solutions to the Z11 equations are (9, 0, 0), (4, 3, −2), (−6, 0, 3), and permutations
of the last two columns. But since the second and third row sums are zero, and the other
orbits all have order 0 (mod 5), the coefficient of the orbits in those rows in the first column
must be zero. None of the solutions has first coefficient −1, so no ICW3(44, 81) exists, and
so no CW(132, 81) exists.

5 Strassler’s table and beyond

There has been a large amount of work on entries in Strassler’s table in the past few years.
In particular, Tan [5] showed nonexistence for 19 cases, and gave an updated version of
the table with 34 open cases remaining (CW(126, 64) and CW(198, 100) were listed as
open in Tan’s thesis, although it was already known that they could be constructed using
Theorem 2.2 of [10]; this was corrected in the published paper). The seven cases resolved
above leave 27 open cases.

Of the remaining cases, while the above methods do not yield hand-checkable proofs,
when there is a sufficiently large multiplier group a computer exhaust becomes quite feasi-
ble. The search begins in the upper right corner of Table 1, and scans the boxes right to left,
doing each from from the bottom to the top. For each orbit it in turn skips it, adds it to P ,

Table 8 Orbit information for
ICW3(44, 81) Z11

Z4 〈0〉1 〈1〉5 〈2〉5
〈0〉1 〈0〉1 〈4〉5 〈8〉5 9

〈2〉1 〈22〉1 〈14〉5 〈2〉5 0

〈1〉2 〈11〉2 〈1〉10 〈7〉10 0

y1 5y2 5y3
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and adds it to N , updating the row and column sums and recursing. For every possible set
of row and column sums (r, c), we call Exhaust(u, v, |Buv|,∅, ∅, r, c).

We were able to eliminate CW(144, 49), CW(152, 49), CW(160, 49), CW(104, 81),
and CW(160, 81). The longest of these, CW(144, 49), had 27 solutions to (4) and (5) mod-
ulo 9, and 252 solutions modulo 16. The computation took 15 days on a workstation, and
required testing 2.4 billion putative circulant weighing matrices.

As stated, Algorithm 1 will find all CW(n, k), or show that none exist. To find
ICWm(n, k), the same algorithm works, allowing up to m copies of each orbit to be added
to P or N . Table 9 gives open cases where we can apply Theorem 4.1 with a reasonably
large m.

Since there is no ICW2(91, 81), we have:

Proposition 5.1 A CW(182, 64) does not exist.

For the other cases, there are ICW s that could potentially be lifted to the corresponding
CW. It is likely that further computations could eliminate some of these, similar to how [11]
showed that there was no lift of an ICW2(77, 36) to a CW(154, 36), or of an ICW2(85, 64)
to a CW(170, 64).

The remaining cases, given in Table 10 either have no multipliers or a very small multi-
plier group, so the methods of this paper will not work to eliminate them. Hopefully some
new ideas will soon allow Strassler’s table to be fully settled, as Lander’s table of difference
set cases were twenty years ago [12].

As with Lander’s table for difference sets, the parameters for Strassler’s table, n ≤ 200
and s ≤ 10, were a convenient focus on approachable problems, not a hard limit never to
be exceeded. The code written for the above searches can handle larger numbers, so we
have started exploring further. The second author has set up an online database [13], which
contains a current version of the table, along with known circulant weighing matrices for
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Table 9 ICW s for open cases

n k m t |M| # ICWd(m, k)

105 36 35 4 6 1

112 36 7 2 3 2

117 36 13 3 3 3

140 36 35 4 6 1

195 36 65 16 3 4

140 64 35 2 12 3

180 64 45 2 12 1

182 64 91 2 12 0

196 64 49 2 21 3

132 81 44 3 10 0

156 81 52 3 6 100

195 81 65 3 12 2

198 81 22 3 5 13

156 100 39 5 4 6

165 100 33 4 5 8

195 100 39 5 4 6

parameters in Strassler’s table. It also has partial results for for n ≤ 1000 and k ≤ 192. Out
of the 15982 such parameters, 1175 have CW s, 12017 do not, and 2790 remain open.

6 Proper CW(n, k)

Recall that aCW(n, k) is called proper if it is not a multiple of any smallerCW , i.e. its group
ring representation A(X) is not equal to B(Xd) for any n = dm for B(X) a CW(m, k). For
example,

A = X + X2 + X3 + X6 + X9 + X18 − X4 − X12 − X10

is a proper CW(26, 32) (i.e. no XaA(Xb) for b relatively prime to 26 has all its coefficients
with a common factor), while

A = X2 + X8 + X10 + X12 + X14 + X20 − 1 − X4 − X16

Table 10 Remaining open cases with n ≤ 200, k ≤ 100

n k n k n k n k n k

105 36 116 49 140 64 156 81 112 100

112 36 120 49 180 64 195 81 120 100

117 36 192 49 196 64 198 81 155 100

140 36 156 100

180 36 165 100

195 36 182 100

195 100
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is a multiple of the proper CW(13, 32)

A = X + X4 + X5 + X6 + X7 + X10 − 1 − X2 − X8.

Clearly it suffices to study proper CW s, and restricting our attention to those lets us
present the state of knowledge about circulant weighing matrices in a form far more compact
than Strassler’s table. In this section we give the known results, which almost entirely come
from two constructions.

Leung and Schmidt [14] showed that when k is an odd prime power there are only a finite
number of proper CW(n, k). For which k can we give a complete list of proper CW(n, k)?
This has been solved for k = 4 [15] and k = 9 [16].

For k = 25 Leung and Ma [17] show that none exist with n ≡ 0 (mod 5), and in a 2011
preprint [18] deal with the other cases, although this has not appeared in print.

For k = 16 this question was not completely answered. In [19], it is shown that all proper
CW(n, 16) have either n = 21, 31, 63 or are of “Type II”, meaning that they are constructed
using Theorem 2.3 of that paper:

Theorem 6.1 If B is a CW(2n, k), and C is a CW(n, k). If the supports of B(X),
XnB(X), C(X2), XnC(X2) are pairwise disjoint, then

(1 − Xn)B(X) + (1 + Xn)C(X2)

is a CW(2n, 4k).

With this we can classify the proper CW(n, 16) of even order:

Theorem 6.2 The proper CW(n, 16) have order 21,31,63, and 14m for all m ≥ 2.

Proof The odd orders were taken care of in [19]. Let C = −1 + X + X2 + X4 denote the
CW(7, 4), and

A = (1 − X7m)C(X2m) + (1 + X7m)XC(Xm).

The coefficients of A are disjoint for m > 1, so by Theorem 6.1 A is a CW(14m, 16). Since
the coefficients of X0, X1, X2m and X7m are nonzero, no equivalent difference set has all
terms divisible by 2, 7 or m, so it is a proper one.

The only other way to construct a Type II CW would be to use one of the CW(2m, 4).
Proper ones are equivalent to −1 + X + Xm + Xm+1 and so in Theorem 6.1 the supports
would not be disjoint. Improper ones are either a multiple ofCW(7, 4), or also have nonzero
coefficients for X0 and Xm, and so also fail the requirements of the theorem.

For larger k not much is known. Table 11 gives a list of known proper CW(n, k) for
k ≤ 192. Aside from small cases, they all come from Theorems 6.3 and 6.6 below.

The Kronecker product construction of Arasu and Seberry [3] accounts for almost all of
the proper CW(n, s2) for s not prime, and all the infinite classes except for CW(2m, 22)
[15] and CW(48m, 62) [20]:

Theorem 6.3 If a proper CW(n1, k1) and proper CW(n2, k2) exist with gcd(n1, n2) = 1,
then they may be used to construct a proper CW(n1n2, k1k2)
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Table 11 Known Proper
CW(n, k) k Known Proper CW(n, k)

22 2m, 7

32 13, 24, 26

42 14m, 21, 31, 63

52 31, 33, 62, 71, 124, 142

62 26m, 48m, 91, 168

72 57, 87, 114, 171

82 42m, 62m, 73, 127, 217, 511

92 91, 121, 182, 364

102 62m, 66m, 142m, 217, 231, 497, 994

112 133, 665

122 182m, 336m, 273, 403, 744

132 183, 366, 549, 732

142 114m, 174m, 342m, 399, 609

152 403, 429, 744, 806, 923

162 146m, 254m, 434m, 273, 511, 651, 819, 868, 889

172 307, 614

182 182m, 242m, 624m, 847

192 381, 762

Numbers in bold come from
Theorem 6.6. Underlined entries
are sporadic CW s that do not
come from Theorems 6.3 or 6.6.
Entries cm are for all m such that
cm ≥ k

For k a prime power, most CW(n, k) come from relative difference sets. A (m, n, k, λ)

cyclic relative difference set (RDS) D is a k-element subset of Zmn such that

DD−1 = k + λ(Zmn − Zn).

See [21] for more information on relative difference sets. It is well known (e.g. Theorem
2.1 of [19]):

Theorem 6.4 If a cyclic (m, 2n, k, λ)-RDS exists, then there is a CW(mn, k).

In [22] it is shown:

Theorem 6.5 For q a prime power, a cyclic
(

qd−1
q−1 , n, qd−1, qd−2(q − 1)/n

)
-RDS exists if

and only if n is a divisor of q − 1 when q is odd or d is even, and if and only if n is a divisor
of 2(q − 1) if q is even and d is odd.

Taking d = 3, we have:

Theorem 6.6 Let q be a prime power. Then a proper CW((q3 − 1)/n, q2) exists for all
divisors n of (q − 1) if q is even, and all divisors n > 1 of (q − 1) if q is odd.

All the proper CW(n, k) in Table 11 coming from this theorem are in bold.
This theorem shows that there are properCW(q3−1, q2)when q is an even prime power.

They also exist for q = 3 and 5, and it is tempting to conjecture that this is true for all prime
powers, but larger cases are currently out of reach.
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