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Abstract— A recompressed nested cross approximation (rNCA)
based closely on the recent fast nested cross approximation
(fNCA) algorithm is formulated in this article. The proposed
method builds on previous work in which the fNCA was for-
mulated in a purely algebraic and kernel-independent fashion,
using a top-down recursive application of the adaptive cross-
approximation (ACA). Our proposed method employs ACA
recompression to avoid the need to compute low-rank approxi-
mations of excessively large far-field matrices, and thus mitigates
the effects of high-frequency rank growth on run-time scaling
for electrically large models. The low run-time and memory
cost allows for efficient parallel computation of H2-matrices
for systems of excessive electrical sizes. Radar cross sections
(RCSs) are evaluated for electrically large instances of a perfectly
conducting sphere and the NASA Almond. We observe near-
linear scaling of memory cost and construction time.

Index Terms— Boundary integral equations, linear algebra,
radar cross section (RCS).

I. INTRODUCTION

OVER the past few decades, a myriad of acceleration
techniques for electromagnetic integral equations solvers

have been developed based on the H-matrix data-sparse stor-
age format [1], [2], [3]. Of these, some of the most compelling
are algebraic methods which populate the H-matrix directly
from the entries of the dense impedance matrix, such as the
adaptive cross approximation (ACA) [4], [5]. These methods
offer the ability to construct low-rank approximations derived
from algebraic decompositions of the full integral operator
matrices.

A major challenge for both algebraic and
approximate-kernel techniques (see [6], [7], [8]) is the known
tendency for the reduced rank of admissible submatrices to
grow proportionally with electrical size [9], [10], leading
to impractical asymptotic complexities. In the context of
the fast-multipole method (FMM), this problem has been

Manuscript received 26 April 2022; revised 23 November 2022;
accepted 3 December 2022. Date of publication 23 January 2023; date of
current version 6 March 2023. This work was supported by the Indepen-
dent Research and Development (IRAD) funds from Riverside Research.
(Corresponding author: Nathan M. Parzuchowski.)

Nathan M. Parzuchowski, Brenton Hall, and Ian Holloway are
with Riverside Research, Beavercreek, OH 45431 USA (e-mail:
nparzuchowski@riversideresearch.org).

Isroel M. Mandel and Eli Lansey are with Riverside Research, New York,
NY 10038 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2023.3237277.

Digital Object Identifier 10.1109/TAP.2023.3237277

circumvented by transforming to a representation where the
translation operator is diagonalized [11], [12]. However, this
format relies on the fast matrix-multiply to retain a low
asymptotic complexity and thus precludes the use of direct
solve methods via lower–upper (LU) decomposition.

To address this challenge for algebraic methods, more
sophisticated hierarchical formats have been employed, such
as the H2- and directional H2-matrix [3], [9], [13], [14], [15].
The directional variant of H2-matrices attempts to rigorously
build angular partitioning into the storage format, forcing
all admissible sub-blocks to have a reduced rank bounded
independently of electrical size. Unfortunately, it is not clear
how to formulate an LU decomposition in the directional H2-
matrix format, as the employed directional cluster bases are
not closed under multiplication operations. In contrast, theH2-
matrix method does not rigorously resolve the high-frequency
rank growth problem, but rather mitigates it by allowing for
deeper hierarchies and thus finer grained partitioning. Smaller
partitions ultimately mean a more confined angular breadth
of field clusters with respect to source clusters, and under
certain conditions it can be shown that this puts an upper
bound on the reduced rank [10], [16]. In this work, we describe
a new method to populate a conventional H2-matrix directly
from the entries of a method-of-moments (MoM) matrix for
electromagnetic integral equations.
H2-matrices present challenges for algebraic fill methods,

as they employ global nested bases to encode data sparsity.
Naively, direct computation of these bases would entail con-
structing low-rank approximations of the coupling between
each source cluster and its entire far-field; such an approach
would be computationally intractable. Instead, a common
methodology used to compute these bases, called the nested
cross approximation (NCA), uses ACA to generate low-rank
approximations of the far-field coupling based on representa-
tive sets of mesh elements [17], [18], [19]. How these repre-
sentative elements are chosen is an open question. In recent
efforts [20], ACA was used recursively in top-down fashion,
starting with a full computation of the far-field coupling matrix
at the highest level, and working downward reusing ACA
pivots from parent levels to approximate their contributions to
lower levels. This method shows great promise, but ultimately
retains the difficulty that the far-field coupling matrices will
eventually become intractably large as electrical sizes increase.
To resolve this problem, the authors proposed a bottom-up
recursive pass to select representative elements for all levels of
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the hierarchy. In this work, we modify the top-down algorithm
to work on one admissible block at a time, rather than using the
entire far-field. This obviates the need for the bottom-up step,
but cannot achieve the O(Nk) run-time complexity offered
by the existing method. However, this sacrifice offers greater
flexibility in memory utilization, presenting clear opportu-
nities for process- and thread-level parallelism, as well as
external-memory processing algorithms to circumvent random
access memory limitations. These computational techniques
enable the solution of problems of dramatic electrical size.
In addition, our approach requires fewer levels of approxima-
tion.

II. FORMALISM

In this section, first we give a brief introduction to the
H2-matrix format, followed by a discussion of the NCA.
We then summarize the method proposed in [20], which we
will refer to as fast NCA (fNCA). Finally, we will introduce
our modified NCA, which we refer to as recompressed NCA
(rNCA).

A. H2-Matrix Format

H2-matrices are a subset of H-matrices, employing
hierarchical subdivision to identify admissible submatrices
that admit a data-sparse representation. While H-matrices
make use of local low-rank approximations of admissible
blocks, H2-matrices utilize a combination of global low-rank
row/column cluster bases and low-rank coupling matrices of
admissible blocks. This combination results in greater overall
compressibility of the original dense matrix.

Consider a geometric mesh which has been subdivided
via recursive splitting into a binary cluster tree T . Take for
example two clusters of row and column basis functions,
labeled t and s, respectively, with sizes Nt and Ns . The matrix
block formed by t and s admits a low-rank representation if
the two clusters reside at the same level of T ,1 and obey a
parabolic admissibility condition [9], [10]

κ(max{diam(t),diam(s)})2
≤ η dist(t, s). (1)

Here, diam denotes the largest distance between two elements
of a single cluster, dist is the shortest distance between
two elements in separate clusters, κ is the wavenumber taken
from the Helmholtz kernel operator, and η is a tunable
scaling parameter. Unlike more conventional admissibility
conditions [21], e.g.,

max{diam(t),diam(s)} ≤ η dist(t, s). (2)

Equation (1) uses frequency information in a way that ensures
convergence of low-rank approximations of high-frequency
kernels. This condition leads to a significantly finer matrix
partition, which is only tractable for H2-matrices due to their
reusable global bases.

1In principle, clusters at different levels in the hierarchy can be treated as
admissible, however this complicates definitions, formulations, and implemen-
tation strategies. For the sake of clarity, we impose the restriction to same-level
admissibility.

Fig. 1. Schematic H2-matrix format. Dense blocks are colored red, coupling
matrices are maroon, cluster bases green, and transfer matrices light blue
(grayscale: listed from darkest to lightest). White space indicates memory
reduction. In this example, only diagonal blocks are stored dense, but in
practice, some off-diagonal blocks are also dense.

In H2-matrices, admissible blocks of the MoM matrix are
approximated by

Z(t, s) ≈ V (t)S(t, s)W T (s). (3)

Here Z(t, s) ∈ CNt ×Ns denotes a submatrix of the MoM
matrix, V (t) ∈ CNt ×kt and W (s) ∈ CNs×ks are cluster bases
for t and s with respective reduced ranks of kt and ks , and
S(t, s) ∈ Ckt ×ks is the coupling matrix for the t, s block.

To facilitate near linear algorithmic complexities, cluster
bases must be nested. That is, nonleaf-level cluster bases are
represented by matrix products

V (t1∪2) =

(
V (t1)B(t1)

V (t2)B(t2)

)
(4)

where t1∪2 is the parent cluster of t1 and t2, and B(ti ) ∈

Ckti ×kt1∪2 are transfer matrices encoding the nesting relation-
ship. A rudimentary schematic example of an H2-matrix is
shown in Fig. 1.

B. Nested Cross Approximation

The NCA gets its name from the employment of ACA to
construct nested cluster bases directly from the entries of a
matrix. The general approach is to identify a set of kt proper
pivots τ drawn from each cluster t , as well as a set of kt proper
far-field pivots τ̄ drawn from the far-field Ft , where

Ft =

⋃{
s ∈ T |∃ t ′

⊇ t, s and t ′ are admissible
}
. (5)

The submatrix Z(t, Ft ) should be adequately reconstructed by
a rank-kt cross-approximation built with the pivot set (τ, τ̄ ).
Such a set of proper pivots can be immediately constructed
using ACA to compress Z(t, Ft ).

Assuming pivot sets have been determined for each cluster
in T , we can construct approximations to admissible subma-
trices via the relationship [17]

Z(t, s) ≈ Z
(
t, τ̄

)(
Z
(
τ, τ̄

))−1
Z(τ, σ )

(
Z
(
σ̄ , σ

))−1
Z
(
σ̄ , s

)
(6)
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where (σ, σ̄ ) are the proper pivots for the field cluster s.
We can extract definitions from this expression

V (t) ≡ Z
(
t, τ̄

)(
Z
(
τ, τ̄

))−1
(7)

W (s) ≡ Z
(
s, σ̄

)(
Z
(
σ, σ̄

))−1
(8)

S(t, s) ≡ Z(τ, σ ). (9)

Error bounds on this approximation were established in [17].
We can see that in the limit that (τ, τ̄ ) → (t, Ft ) and
(σ, σ̄ ) → (s, Fs), V (t), and W (s) become identity matrices,
and S(t, s) = Z(t, s). Nesting relationships are provided by

B(t1) = Z
(
τ1, τ̄ 1

)(
Z
(
τ1∪2, τ̄ 1

))−1
(10)

B(t2) = Z
(
τ2, τ̄ 2

)(
Z
(
τ1∪2, τ̄ 2

))−1
(11)

where t1∪2 is the parent cluster of t1 and t2.
Based on these definitions, it is straightforward to com-

pute the entire H2-matrix once the proper pivots have been
identified. The identification task is challenging, however.
As mentioned earlier, direct ACA compression of Z(t, F(t))
is prohibitively expensive for large problems, so approximate
techniques must be formulated.

C. Fast NCA

We now summarize the method proposed in [20], which
applies ACA in top-down fashion to construct nested cluster
bases recursively. First, top-level clusters (i.e., the highest level
clusters that participate in admissible blocks) are identified.
Consider a top-level row-cluster t at depth l. We construct the
far-field coupling matrix for the top level

A(l)(t) ≡ Z
(
t, F (l)(t)

)
(12)

where the same-level far-field is given by

F (l)(t) =

⋃
{s ∈ T |s and t are admissible}. (13)

We now compress A(l) by application of ACA, obtaining (τ, τ̄ )

for t . The compressed representation of A(l)(t) can be reused
as needed to construct transfer or cluster basis matrices for t .

At the next level, we proceed as before for t’s children,
t1 and t2. However, to build nesting relationships between
parent and child cluster bases, we must incorporate far-field
coupling information from higher levels. We do so by append-
ing the columns corresponding to τ̄ generated at level l

A(l+1)(t1) ≡
(
Z
(
t1, F (l+1)(t1)

)
Z
(
t1, τ̄

))
(14)

A(l+1)(t2) ≡
(
Z
(
t2, F (l+1)(t2)

)
Z
(
t2, τ̄

))
. (15)

Now we may once again apply ACA to extract (τ1, τ̄ 1) and
(τ2, τ̄ 2) from A(l+1)(t1) and A(l+1)(t2), respectively. We con-
tinue down T in this fashion until proper pivots have been
computed for every cluster. An analogous procedure is used
to construct the column cluster bases.

D. Recompressed NCA

To motivate the need for a novel NCA fill method, we note
that the computational cost for the fNCA algorithm can
be gleaned from the size of A(l)(t), with N/2l rows and

(N/2l)Csp + k columns in general. Here, k is the cluster basis
rank, N is the total number of unknowns, l is the level of the
cluster tree, and the sparsity constant Csp is the largest number
of admissible blocks any single cluster participates in. Taking
into account the (n + m)k2 cost for ACA compression of
an n × m matrix, and summing all levels in the H2-matrix,
we arrive at an expression for the total cost

L∑
l=1

2lO
((

N/2l(1 + Csp
)
+ k

)
k2). (16)

For fixed rank, this expression results in an asymptotic com-
plexity of O(k2 N log N ), where L ∼ log N . However,
for high-frequency Helmholtz problems, k is a function of
cluster size. In the absolute worst case for surface integral
equations, k ∼ (N/2l)1/2, a result of k growing proportionally
to electrical size. Evaluating the sum in this case yields
O(N 2 log N ).

fNCA presents difficulties as we scale to model sizes
above one million unknowns. This arises as a result of the
large dimensionality of A(l), which contains (N/2l)Csp + k
columns, requiring a significant amount of workspace to com-
pute an ACA representation. The high memory requirement
leads to challenges for parallelization, as multiple processes
require duplications of that workspace and buffer space to store
basis data. One potential solution is to develop an external-
memory (out of core) ACA implementation, but the amount
of I/O required would likely be intractable.

Perhaps a more concerning issue is the behavior of the
sparsity constant at large electrical sizes. Csp is only inde-
pendent of electrical size for low-frequency problems, i.e.,
those where only (2) applies. This is due to the fact that the
minimum admissibility distance is proportional only to the
size of the cluster, so taking smaller subdivisions does not
increase the number of admissible blocks relative to the parent
level at saturation. For high-frequency problems where (1)
also applies, the admissibility distance is proportional to
κ(diam(t))2, indicating that larger electrical sizes will lead to
more admissible blocks and higher values of Csp, thus adding
additional N dependence to (16). However, for a sufficiently
small choice of η, we should recover electrical size invariance
of Csp by bringing the smallest clusters into a low-frequency
condition κdiam(t) ≤ 1.0.

The small clusters which result from constraining Csp will
have far fields with very large relative angular breadth. As a
result, k will exhibit near worst case growth with cluster size,
leading to a super-quadratic asymptotic complexity for fNCA.
This motivates a distinction between the cluster basis rank
k and the rank of the low-rank approximation of individual
admissible blocks, k̃. When considering the coupling between
two admissible clusters, the angular breadth of one with
respect to another is likely to be significantly smaller than
that of their overall far fields (see Fig. 2). Hence, we expect
k̃ to exhibit significantly less high-frequency rank growth
compared with k.

The bulk of computational cost for NCA algorithms is
the computation of matrix elements during ACA construction
of low-rank approximations, owing to numerical integration
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Fig. 2. Example 2-D model of an infinite cylinder cross section. A nominal
row cluster and far-field, as well as an admissible column cluster are
highlighted. The angular breadth of the column cluster with respect to the
row cluster is shown as significantly smaller than that of its far-field.

required to construct successive rank-one approximations.
rNCA exploits this fact to achieve superior practical runtime
complexity, while maintaining the same asymptotic complex-
ity as fNCA. This is achieved by performing ACA on indi-
vidual admissible sub-matrices within the far-field coupling
matrix, and recompressing the result into a cluster basis rep-
resentation. As a result, the run time consumed by numerical
integration becomes dependent on k̃ rather than k.

Consider the level-specific far-field coupling matrix for row
cluster t at level l

Z t,F (l)
t

≡
(
Z ts1 Z ts2 · · · Z tsx

)
(17)

where {s1, s2, . . . , sx } are clusters at level l which are admissi-
ble with t . For each admissible cluster si , we compute the ACA
representation of Z tsi , and extract the column pivots σi . For a
single cluster t , this method requires at worst Csp evaluations
of ACA on square matrices of size N/2l , leading to a total
cost that can be modeled by

L∑
l=1

2lO
((

2Csp N/2l)k̃2). (18)

This leads to a k̃2 N log N practical complexity.
Assuming cluster bases for parent clusters have already

been constructed, we start from the precomputed rank-k set
of parent far-field pivots τ̄ p, and append columns to construct
an approximation to A(l)(t)

Ã(l)(t) =
(
Z t τ̄ p

Z tσ1 Z tσ2 · · · Z tσx

)
. (19)

At the end of the procedure, Ã(l)(t) is recompressed using
ACA to select proper pivots τ and τ̄ for cluster t . The cost
of the recompression stage is dependent on k rather than k̃,
because this computation constructs the final cluster basis. The
overall time complexity for rNCA is thus augmented by a
recompression term

L∑
l=1

2lO
((

N/2l
+ Csp k̃

)
k2). (20)

TABLE I
OBJECT ELECTRICAL SIZE AND NUMBER OF RWG UNKNOWNS

ASSOCIATED WITH NASA ALMOND SURFACE MESHES
AT GIVEN FREQUENCIES

This means that rNCA ultimately has the same asymptotic
scaling as fNCA. However, all required matrix elements
have been precomputed in the previous ACA approximations
of individual sub-matrices, so numerical integration is not
required here. We show in Section III-C that while the
asymptotic scaling is the same, the term which dominates
in asymptotics is two orders of magnitude smaller than the
numerical integration term for practical problem sizes.

Furthermore, rNCA strongly mitigates the need to take
ACA algorithms out of core, as the large coupling matrices
required by fNCA are reduced to more manageable sub-blocks.
However, having a fully in-core ACA implementation does
eventually limit the maximum size of those sub-blocks, and
therefore the highest level at which clusters may be considered
for admissibility. Additionally, the lower memory cost associ-
ated with computing single sub-blocks enables more cluster-
basis subtrees to be constructed simultaneously in parallel.
Intrasubtree parallelism is also enabled, as ACA can be run
on individual sub-blocks independently. Furthermore, at any
time during the construction of a cluster basis, Ã(l)(t) can
be recompressed to reduce memory consumption, in addition
to the final recompression used to construct the ultimate
cluster basis representation. To enable large problem sizes,
our implementation employs process parallelism with MPI to
construct subtrees simultaneously, and it features an out-of-
core implementation which requires only those subtrees and
matrix blocks which are immediately being computed to be in
main memory during execution.

III. NUMERICAL RESULTS

To showcase the NCA methods presented in this article
for electrically-large problems, we compute MoM impedance
matrix and radar cross sections (RCSs) for the NASA
Almond [22] and a sphere, which are both treated as perfect
electrical conductors (PEC). For each model, we choose sev-
eral frequencies and create surface meshes with average mesh
width h = λ/20. Table I lists six frequencies for the NASA
Almond, along with the corresponding length in wavelengths
and number of Rao–Wilton–Glisson (RWG) unknowns, and
Table II lists the corresponding quantities for the sphere
geometry. All of these models can be considered electrically
large, given that the smallest spatial extents are about an order
of magnitude greater than one wavelength.

All calculations were performed on single cluster nodes
with 32 cores with two threads each. Each processor has a
frequency of 2900 MHz. Process parallelism was employed
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TABLE II
OBJECT ELECTRICAL SIZE AND NUMBER OF RWG UNKNOWNS ASSOCI-

ATED WITH SPHERE SURFACE MESHES AT GIVEN FREQUENCIES

with MPI, using 32 individual processes for each run. Minimal
communication between processes was required as cluster
basis calculations can be performed independently within
subtrees, and all processes had access to the same memory
and disk space. No multithreading was implemented in this
work.

A. Tunability of H2-Matrix Methods

The accuracy of both H- and H2-matrix methods should
be controllable via tuning of two parameters: 1) the ACA
convergence threshold ε and 2) the admissibility parameter η.

First, we consider the convergence threshold for ACA,
which we call εNCA and εACA for NCA and H-matrix ACA
calculations, respectively. We have found find that εNCA should
be at least as small as εACA, consistent with the observa-
tion that H2-matrix representations require multiple pivoting
approximations rather than the single pivoting approximation
required to construct a rank-k̃ approximation in H-matrix
ACA.

Since H-matrices approximate chunks of the geome-
try locally, matrix blocks involving regions with com-
plicated geometries can be represented with a relatively
low-compression approximation without significantly altering
the overall compression for the impedance matrix. In con-
trast, owing to their global data sparsity, H2-matrices have
no mechanism to handle complicated geometries locally and
thus require stronger convergence tolerance to explain these
features.

In addition to the convergence threshold, we also note the
importance of choosing an adequate admissibility parameter
η, which sets the strictness of the admissibility condition
[see (1)], and thus controls the coarseness of the hierarchical
partition. Owing again to the locality of data sparsity, the
accuracy of H-matrices is less sensitive to changes in η, so it
is common practice to use a very high value corresponding to
a coarse partition and greater compression.

In Fig. 3, we see that the η sensitivity of compres-
sion and error is much stronger for H2-matrix storage
than for H-matrices. These results show the rapid trade-off
between compression/accuracy and admissibility for values of
η between 1 and 10, with changes becoming less dramatic
for higher values. Matrix storage seems to bottom out around
η = 12, possibly due to the emergent frequency dependence
of Csp for electrically large clusters [15]. Despite this, error
continues to gradually increase, so clearly for this specific
example we should choose η ≤ 12. We find that for many
surface problems, η = 10 provides a good balance. However,
this is not always the case; a similar study conducted for

Fig. 3. Disk storage and norm difference error dependence on admissibility
parameter for the NASA Almond at 13.5 GHz. Results for rNCA, fNCA, and
H-matrix ACA are shown at εNCA = εACA = 10−4 (left column) and 10−5

(right column).

spheres reveals that sufficient accuracy may be achieved at
η = 20.

We also note that changing εNCA or εACA results in an overall
shifting of the curves for error and storage for all methods.
In practice, calculations should be checked for convergence
using multiple values of εNCA to demonstrate an unchanging
RCS. We find that εNCA = 10−4 achieves converged RCS
results for pipes and spheres, but for electrically large Almonds
additional accuracy is needed to describe the sharp features
around the tip. We have found that εNCA = 10−5 was sufficient
for those models.

We see also from these figures that the fNCA and rNCA
methods have very similar performance trends, with fNCA
providing slightly better accuracy but slightly worse compres-
sion. Compared with H2-matrix methods, H-matrix methods
generate significantly more accurate approximations of the
overall impedance matrix, at the cost of significantly higher
storage requirements. However, in Section III-B, we will
demonstrate that even with less accurate approximations of
impedance matrices, H2-matrix methods generate RCS pre-
dictions consistent with H-matrix methods.

B. Scattering Observables for Electrically Large Models

To validate the NCA method presented here, we imple-
mented the H2-matrix LU decomposition devised in [23].
We use a very high truncation tolerance to minimize errors
introduced in the basis-update phase of the LU decomposition.
While we have demonstrated that the NCA fill method is able
to populate impedance matrices for problems up to 36 million
unknowns, our current LU implementation is limited to a few
million unknowns, and thus RCS results are provided only for
these smaller cases.

We validate rNCA and fNCA against the Mie series solution
for a PEC sphere scatterer. Fig. 4 shows the azimuthal and
polar angle polarizations of the bistatic RCS of a sphere of
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Fig. 4. Computed bistatic RCS for a 20λ diameter PEC sphere employing rNCA and fNCA, compared with Mie series analytic result. (Bottom) Residuals
are plotted.

Fig. 5. Computed monostatic RCS for the NASA Almond at 40 GHz employing rNCA and fNCA, compared with H-matrix ACA. (Bottom) Residuals are
plotted.

diameter 20λ. Both NCA methods are computed with ηNCA =

20 and εNCA = 10−4. Results are very consistent with the
analytic Mie series, with residuals on the order of 0.1 dBsm.
The largest residuals appear at nulls in the RCS. We note that
residuals are roughly similar for both rNCA and fNCA.

To test the robustness of the method against multiple geome-
tries, we consider the relatively more sophisticated NASA
Almond, with a large dynamic range in the monostatic RCS.
Fig. 5 shows azimuthal and polar angle polarizations for the
monostatic RCS of an Almond at 40 GHz (33.34λ length).
Here we cannot validate against analytic expressions, so we
have computed RCS curves using H-matrix ACA. We use
ηNCA = 10 and εNCA = 10−5, as we have found that the
more relaxed parameters used for the sphere are not adequate
to describe the low RCS region resulting from scattering off
the tip of the Almond. Again, both rNCA and fNCA show
good agreement with the reference RCS curve. Residuals are
observed to be much larger for low RCS values, with some
minor but noticeable deviations evident. Again, the largest
residuals are exhibited at the nulls of the RCS, and both
NCA methods feature very similar residual profiles. However,
as these results are compared to those computed with an
H-matrix ACA solution and not an analytic or uncompressed
solution, we can only conclude that there are minor differences
between H-matrix and H2-matrix results.

C. Run-Time Scaling

Despite significant rank suppression, high-frequency rank
growth still remains in the absence of additional directional

Fig. 6. Rank dependence on cluster size for the cluster basis rank k and
individual submatrix ACA ranks k̃. Aggregated data for PEC spheres at 3, 4,
and 5 GHz are shown. All calculations are performed at εNCA = 10−4 and
ηNCA = 20. Here, n indicates the size of individual clusters.

subdivision of the far fields. Figs. 6 and 7 show the growth
of the cluster basis ranks k, and the submatrix ranks k̃ as a
function of cluster size for the sphere and Almond geometries,
respectively. The sphere is a near-worst case scenario for
high-frequency rank growth, as spherical symmetry allows
for far fields which frequently violate directional admissibility
dramatically (see Fig. 2). This fact is evidenced in Fig. 6,
where both k and k̃ grow as n1/2, where n is the individual
cluster size. We note, however, that k̃ exhibits relative bound-
edness for clusters smaller than 104 elements. In this case, both
fNCA and rNCA will exhibit practical scaling like N 2 log N ,
as will H-matrix methods.
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Fig. 7. Rank dependence on cluster size for the cluster basis rank k
and individual submatrix ACA ranks k̃. Aggregated data for the NASA
Almond at 40, 80, and 120 GHz are shown. All calculations are performed
at εNCA = 10−5 and ηNCA = 10. Here, n indicates the size of individual
clusters.

Fig. 8. Run times per process for the cluster basis computation of NCA
calculations of a PEC sphere between 1 and 7 GHz. rNCA calculations are
broken out into ACA and recompression parts. Dense and coupling matrix fill
times are the same for rNCA and fNCA. All calculations are performed at
εNCA = 10−4 and ηNCA = 20.

The Almond has much more favorable rank-growth, with
k exhibiting n1/6 scaling and remarkably, k̃ shows com-
plete boundedness. With these growth rates, fNCA scales as
N 4/3 log N , while the practical scaling of rNCA is N log N .
Again, rNCA tracks with H-matrix methods for run-time
scaling for similar problems.

In Figs. 8 and 9, we plot the run times for the ACA and
recompression part of rNCA and the ACA part of fNCA.
Here, we compute numerical practical complexities by fitting
our results to the theoretical predictions given in (16), (18),
and (20). In doing so, we demonstrate the conformity of our
results to the theoretical complexities expected due to the
fNCA and rNCA formulations. We note that these are not
asymptotic complexities but rather practical complexities for
problems with large electrical sizes. It is not certain that the
practical scaling relationships found here will continue to hold
for significantly larger problems. To compile these results,
we employed a highly optimized RWG fill function and ACA
implementation from an existing CEM engine.

As predicted, Fig. 8 indicates relatively poor run time
scaling across the board for the PEC sphere, with the dominant
component of the run time from the ACA fill stage. Although
the recompression part of rNCA exhibits super-quadratic scal-
ing, it is multiple orders of magnitude faster than the ACA part,

Fig. 9. Run times per process for the cluster basis computation of NCA
calculations of the NASA Almond between 13.5 and 240 GHz. rNCA
calculations are broken out into ACA and recompression parts. Dense and
coupling matrix fill times are the same for rNCA and fNCA. All calculations
are performed at εNCA = 10−5 and ηNCA = 10.

which exhibits a more manageable N 1.53 log N complexity.
While the recompression scaling is daunting, this term will
not become the dominant component of the run time until
around two billion unknowns if the measured scaling behavior
holds for larger problems. We also note that less pathological
models will have significantly higher crossover points. fNCA
exhibits N 1.66 log N complexity. While this is preferable to the
super-quadratic scaling of the recompression part of rNCA,
the overall cost and practical scaling of rNCA is superior for
problems with millions to tens of millions of unknowns, and
perhaps larger if scaling relationships hold. We were not able
to compute fNCA results for larger spheres due to memory
limitations of our implementation.

In contrast to the sphere results, electrically large Almonds
have excellent scaling properties for both rNCA and fNCA
(see Fig. 9). Here, we see that both the ACA and recom-
pression parts of the rNCA fill have time complexities near
N 1.2 log N . Again, the recompression part is multiple orders
of magnitude faster than the ACA part. fNCA shows markedly
worse scaling of N 1.52 log N . Some part of the discrepancy
between fNCA and rNCA may be due to the need to compute
noncontiguous rows of the entire far-field coupling matrix in
the former method, which leads to complications in looking
up basis functions and managing workspace.

It is important to note that these scaling results only account
for the filling of the H2-matrix. A full direct solver approach
to MoM also includes an LU-factorization and solve step.
Development of a performant and scalable factorization is
outside of the scope of this current work, but to enable
direct solution of electrically very-large problems, it is critical
that any associated factorization and solvers are eventually
demonstrated to exhibit similar near-linear runtime scalings
in these regimes.

D. Memory Scaling

Figs. 10 and 11 show the scaling of the matrix storage
requirement for rNCA as a function of unknowns for the PEC
sphere and NASA Almond, respectively. Results are shown in
kilobytes per unknown. We chose this normalization because
all methods should have a common factor of N in their storage
complexity; this normalization isolates the marginal differ-
ences in scaling between methods. For reference, we have
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Fig. 10. Required memory for storage of impedance matrix for a PEC sphere
between 1 and 7 GHz. Results are given for H-matrix ACA and the rNCA
fill methods. εNCA = 10−4 denotes the ACA convergence tolerance used in
the rNCA method. ηNCA = 20. H-matrix ACA is computed at εACA = 10−4

and ηACA = 1000.

Fig. 11. Required memory for storage of impedance matrix for a NASA
Almond between 13.5 and 240 GHz. Results are given for H-matrix ACA
and the rNCA fill methods. εNCA = 10−5 denotes the ACA convergence
tolerance used in the rNCA method. ηNCA = 10. H-matrix ACA is computed
at εACA = 10−4 and ηACA = 1000.

included results for H-matrix storage computed using ACA
with subsequent reduced SVD to achieve near optimal com-
pression. Because H-matrices are more robust with respect to
partitioning and error tolerance, we have used an extremely
relaxed scaling factor, ηACA = 1000, compared with a com-
parably strict factor ηNCA = 10–20 for the H2-matrix method.
Furthermore, the NCA method employs the parabolic admis-
sibility condition [see (1)], while H-matrix ACA employs the
standard condition [see (2)]. We have observed that H-matrix
methods produce excellent reproductions of impedance matri-
ces even with these excessively liberal partitions, so this should
be the standard that H2-matrix methods need to surpass,
regardless of the relative strictness of their admissibility test.
Finally, we employed higher tolerances for the NCA method
where necessary to properly describe features. For H-matrix
ACA, we only consider the lower tolerance εACA = 10−4.
This is again because H2-matrices are subject to significantly
more error than H-matrices due to the global approximations
of matrix sparsity. fNCA results are not included, as they track
very closely with rNCA results, and cannot be calculated for
models as large as these due to the absence of an efficient
out-of-core implementation.

For the sphere model, we observe that rNCA actually
exhibits worse memory scaling than H-matrix ACA, by a

very slight margin. Despite this, the storage requirement for
impedance matrices computed with rNCA is about an order
of magnitude smaller, and the crossover point for these curves
is unreachable (of order 1020 unknowns). We note that the
scaling becomes significantly worse for smaller ηNCA. It is
not surprising that the sphere exhibits poor memory scaling,
given its susceptibility to high-frequency rank-growth, but we
also note that there is a lot of variation in these data points,
and further assessment may be required.

Results for scaling of the storage requirement are extremely
impressive for the Almond meshes. We see an improvement
in storage from H-matrix ACA for all meshes considered.
Most importantly, the scaling with number of unknowns has
reduced from N 1.33 log N with H-matrix/ACA to N 0.98 log N

with H2-matrix/rNCA. This is a dramatic improvement that
enables access to problems of significantly larger sizes. For
example, if these scalings hold, the expected storage require-
ment for a 100 million unknown Almond would be 72.7 TB
for H-matrix ACA, while only 7.4 TB for the rNCA method.
For one billion unknowns, the contrast is immense, with
H-matrix ACA requiring 1.7 PB, while the rNCA would
require only a mere 79.9 TB. The factor of 22 reduction in
matrix size will lead to impressive gains in overall run time
(including factorization and solve steps) due to reduced I/O
requirements.

If we find a degradation in accuracy for larger problems,
ϵNCA may be tightened, which should ultimately result in an
upward shift of the memory scaling curve, without significant
change to the slope. This will increase the crossover point
where H2-matrix methods become useful, but the overall
memory scaling will still be superior to H-matrix methods.

IV. CONCLUSION

In this effort, we have introduced rNCA which was
designed to alleviate run time challenges associated with
electrically large Helmholtz problems. We have noted that this
method produces results with comparable accuracy and storage
requirement to fNCA as well as improved run times and
practical run time scaling. We have analyzed the rank growth
behavior of spherical and Almond surface meshes and found
that with a parabolic admissibility condition, rank growth is
extremely manageable for the Almond geometry but scales
as n1/2 for spheres. Thus, it seems that H2-matrix methods
are best suited to geometries which naturally obey directional
admissibility.

We have demonstrated the viability of the rNCA to produce
accurate impedance matrices up to at least a few million
unknowns and have proven that it can efficiently achieve
extremely sparse representations of problems up to 36 mil-
lion unknowns which requires only a few terabytes of disk
space for storage. Our storage scaling estimates indicate that
impedance matrices for electrically large problems of up to one
billion unknowns can be generated with fewer than 100 TB
of disk space.
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