
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/366393913

Virtual reality framework for multi-human multi-agent adaptive teamwork

Conference Paper · December 2022

CITATIONS

0
READS

532

5 authors, including:

Joey Salisbury

Riverside Research

45 PUBLICATIONS   830 CITATIONS   

SEE PROFILE

Ross L. Bobb

Riverside Research

3 PUBLICATIONS   2 CITATIONS   

SEE PROFILE

Virgil Barnard

Riverside Research

12 PUBLICATIONS   4 CITATIONS   

SEE PROFILE

William Casebeer

Beyond Conflict International

45 PUBLICATIONS   726 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Joey Salisbury on 18 December 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/366393913_Virtual_reality_framework_for_multi-human_multi-agent_adaptive_teamwork?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/366393913_Virtual_reality_framework_for_multi-human_multi-agent_adaptive_teamwork?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joey-Salisbury?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joey-Salisbury?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Riverside_Research?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joey-Salisbury?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ross-Bobb?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ross-Bobb?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Riverside_Research?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ross-Bobb?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Virgil-Barnard?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Virgil-Barnard?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Riverside_Research?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Virgil-Barnard?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Casebeer?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Casebeer?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Casebeer?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joey-Salisbury?enrichId=rgreq-9d880ab54d7fc494a93131ad4d7d40db-XXX&enrichSource=Y292ZXJQYWdlOzM2NjM5MzkxMztBUzoxMTQzMTI4MTEwODE3NzYxMkAxNjcxMzc4MzcwNTk2&el=1_x_10&_esc=publicationCoverPdf


 
 

 

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC 2022 Paper No. 22240 Page 1 of 13 

Virtual reality framework for multi-human multi-agent adaptive teamwork 

 
Joseph P. Salisbury Ross L. Bobb Virgil O. Barnard IV 

Riverside Research Riverside Research 

 

Riverside Research 

Lexington, MA Beavercreek, OH Beavercreek, OH 

jsalisbury@riversideresearch.org rbobb@riversideresearch.org vbarnard@riversideresearch.org 

 
William D. Casebeer David M. Huberdeau 

Riverside Research Riverside Research 

Lexington, MA Lexington, MA 

wcasebeer@riversideresearch.org dhuberdeau@riversideresearch.org 

 
ABSTRACT 

 

Individualized, adaptive intelligent technologies that continuously promote the emergence of team cohesion in novel 

groups of humans and intelligent agents are necessary to maximize collective adaptation to rapidly evolving 

environmental demands. Here, we describe an iterative three-phase human-centered design and evaluation framework 

to aid in the development of teamwork-promoting autonomous capabilities. Qualitative and quantitative feedback 

from each phase can be used to improve the fidelity of simulations for training, autonomy performance, and the design 

of user interfaces. In the initial phase, synthetic agents are used to approximate human behaviors and provide initial 

training of AI models. In the second phase, individual human operators are introduced to evaluate the capability in a 

simulated operational environment. In the third phase, networked virtual reality clients allow human teams to 

collaborate on tasks in an immersive, physics-based simulation environment to evaluate how the capability may 

complement and enhance teamwork performance. To demonstrate this framework, we developed a virtual reality 

combat simulation demonstrating a rifle-mounted fire control system with target detection and tracking algorithms. 

Test user and stakeholder feedback was collected and reviewed to establish requirements for an intelligent decision-

making aid to fuse data from individual fire control systems and coordinate target allocation and threat prioritization. 

Miniature unmanned aerial vehicles were incorporated to assist target tracking. Combat simulations are used to train 

algorithms to detect and track threats, predict outcomes, and provide feedback to coordinate squad tactics based on 

individual and group factors. Integration of these artificial intelligence capabilities into the virtual reality environment 

enable human-in-the-loop evaluation of their impact on multi-human multi-agent teamwork. By providing a 

continuous environment for model training and human-in-the-loop evaluation in virtual reality, teamwork autonomies 

can be agilely developed centered around human factors to improve both performance and teammate acceptance. 
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INTRODUCTION 

 

Ongoing advances in artificial intelligence and machine learning (AI/ML) are enabling autonomous agents to 

participate as collaborative teammates that contribute to teamwork effectiveness and performance (Larson & 

DeChurch, 2020; O’Neill et al., 2020; Seeber et al., 2020). Autonomous agents (or “autonomies”) can be leveraged to 

support teamwork activities including team coordination, task reallocation, and continuous interactions between 

humans and other autonomous agents (Frame et al., 2020; Madni & Madni, 2018; Roth et al., 2019). Teamwork can 

be viewed as a multilevel process that includes individual taskwork as well as individual- and team-level states (e.g., 

cohesion, shared mental models, shared situation awareness) and processes (e.g., coordination and communication) 

that influence team performance and effectiveness (DeCostanza et al., 2018; Kozlowski & Klein, 2000; Marks et al., 

2001; Salas et al., 2007). An autonomy that can sense, process, and respond to individual- and team-level states can 

use this to adapt to evolving team dynamics and provide personalized and complementary assistance to enhance both 

individual and team-level performance (Grimm et al., 2018; Mait et al., 2017; Schaefer et al., 2021).  

 

Autonomies that are both adaptive and robust are especially critical for effective team performance when operational 

contexts are complex, austere, and involve high, potentially life-threatening, risks (Schaefer et al., 2021). When 

autonomies operate in the same environment as humans, there is risk of conflict (e.g., the operator and the autonomous 

component work at cross-purposes), discoordination (e.g., the autonomous component failing to account for operator 

actions), and cognitive bias in operator decision making (e.g., the operator choosing sub-optimal actions based on 

overestimating the likelihood of rare events). To address this, human-aware planning requires an autonomy to have a 

representation of the perceived mental model of humans collaborators – an artificial “theory of mind” (Rabinowitz et 

al., 2018; Williams et al., 2022). Theory of mind could be utilized to infer operator intent as well as provide explainable 

plans that human operators can comprehend and trust (Chakraborti et al., 2018). When interacting with multiple human 

teammates, the autonomy must be able to identify an explainable policy – a strategy in pursuit of a goal – that is 

consistent across the mental models of all teammates to avoid confusion and loss of trust. Individual augmented reality 

(AR) displays can provide personalized feedback to address this problem (Sengupta et al., 2018).   

 

One domain where autonomous agents could provide adaptive and individualized teamwork enhancements via AR 

displays is the dismounted rifle squad. Intelligent decision-making aids (IDAs) implemented in dismounted systems 

could be used to identify and recognize threats, predict adversarial force position and movement, and highlight ‘danger 

areas’ (Geuss et al., 2019). This information could be displayed using AR on a weapon-mounted optic, such as the 

next-generation squad weapon fire control (NSGW-FC, Figure 1A). The NGSW-FC includes a variable magnification 

optic, backup etched reticle, laser rangefinder, ballistic calculator, atmospheric sensor suite, compass, Intra-Soldier 

Wireless, visible and infrared aiming lasers, and a digital display overlay. Using the NGSW-FC with additional sensors 

enables an aided target recognition (AiTR) system that can detect and highlight threats, prioritizing operator attention. 

Fusing data from multiple sources, including squad embedded autonomies such as the Black Hornet Personal 

Reconnaissance System (PRS, Figure 1B), an IDA could coordinate target tracking within and across squads, direct 

squad movement, formation, and fields of fire, and facilitate target prioritization and allocation. IDAs with access to 

the roles, capabilities, limitations, behaviors, and physiology of their human teammates could leverage this data for 

more optimal decision making. For example, behavioral data can be used to anticipate actions and needs and train 
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small unmanned aerial or ground systems (sUAS/sUGS) to support the dismounted squad (Lance et al., 2020). IDAs 

aware of the limitations of AI/ML capabilities could help human teammates calibrate the level of trust they should 

give to information provided (Scielzo et al., 2021).  Previously, we developed a virtual reality (VR) testbed to address 

several needs critical to an effective dismounted soldier AiTR-AR system (Bobb et al., 2022). Our main objectives 

were to provide a platform for: 

 

1. Generating operationally relevant synthetic data for training AiTR algorithms. 

2. Rapid prototyping of AiTR-AR capabilities and test case scenarios.  

3. Objective evaluation of how the system impacts the operator under simulated operational conditions.  

 

Each of these capabilities contribute to our ability to design, evaluate, and improve upon the dismounted soldier AiTR-

AR system with an iterative human-centered approach. For example, while AiTR-AR displays are intended to help 

optimize attention resources, there are numerous ways they may fail to adequately consider the cognitive mechanisms 

underlying allocation of attentional resources and adversely impact visual cognition and search (G. Larkin et al., 2020; 

G. B. Larkin et al., 2020). Likewise, the effectiveness of AiTR algorithms can be confounded by a variety of 

parameters introduced by challenging operational conditions, such as environmental obscurants and hardware 

limitations (e.g., sensor accuracy/resolution, processor speed, size, weight, power consumption, etc.). Therefore, it is 

necessary to train AiTR algorithms on data representative of an operator’s perspective and validate early in the design 

process they are performant given operational constraints. Through this operator-centric approach, our VR testbed 

enables continuous improvement in each sub-system that impact human-machine synergies and performance gains.  

 

To demonstrate how the VR testbed could be used to objectively evaluate AiTR-AR designs, we completed a proof-

of-concept system evaluation that measured operator physiology and task performance with and without AiTR-AR in 

a combat scenario (Bobb et al., 2022). Evaluation participants exhibited reduced stress and improved performance 

with AiTR-AR. Participants reported the system aided their ability to detect, track, and engage threats. Having 

demonstrated how VR could be used to evaluate a dismounted soldier AiTR-AR, we were motivated by stakeholders 

to explore capabilities that enhanced human-machine teaming synergies at both the individual- and squad-level. In 

this paper, we describe initial progress toward developing a revised VR testbed for the design and evaluation of IDAs 

for the dismounted soldier squad. This teamwork coordination IDA would provide adaptive AiTR capabilities that 

prioritize and allocate targets based on individual- and team-level factors. To achieve this, we: 

 

1. Refined system user needs based on feedback from system evaluation participants and stakeholders 

2. Present a three-phase framework utilizing VR to iteratively design and evaluate a teamwork coordination agent, 

and describe progress on using this framework to develop an IDA to coordinate squad actions  

 

We describe how the proposed development framework can be applied to design and evaluate multi-human multi-

agent AI/ML capabilities, using an IDA for rifle fire team coordination as example.  

 
Figure 1. Technologies used in demonstration of multi-human multi-agent adaptive teamwork in VR. A. Next 

generation squad weapon (Sig Sauer MCX-Spear) and fire control (Vortex Optics XM157) with digital cameras for 

target tracking. B. The 16.8 cm long Black Hornet UAV can provide situation awareness for the dismounted squad. 
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METHODS 

 

VR Environment 

 

The VR scenario was developed in Unity3D (2019.4.13f1) and evaluated using the Oculus Quest 2. A full description 

of the system and user evaluation can be found in our prior report (Bobb et al., 2022). Briefly, evaluation participants 

were positioned in a guard tower with (AI, non-human) squad members positioned in guard towers on opposing 

corners of the facility (Figure 2A). Participants were informed their primary objective was to guard crates from 

adversarial forces. Participants received training on mission objectives, their weapon, and the AiTR-AR system being 

evaluated (Figure 2B) from RITA (Real-time Intelligent Training Assistant). Participants completed two rounds of the 

combat scenario, with and without AiTR system, with each condition lasting five minutes. The order of these 

conditions was randomized across participants. A chest-worn heart rate monitor (Polar H10) was used to measure 

heart rate activity during task performance. Participants were trained in a tactical breathing exercise by RITA as a 

method for baselining stress between combat conditions. Various task-related performance metrics were collected, 

including the number of shots fired, participant accuracy, number of shots on participant, and number of crates 

remaining. An outline of the evaluation experience is shown in Figure 2C. 

 

Analysis of Participant Performance and Feedback 

 

After completing the VR experience, participants (N=12) were asked about their most and least favorite aspects of the 

experience, what they found most challenging, what they found most confusing, and what they would change about 

the experience. Previously, we analyzed the responses to these prompts around the specific benefits and drawbacks of 

the AiTR system being evaluated. We revisited participant responses to identify needs that may be addressed by an 

IDA with squad-level information. Participant responses to each prompt were reviewed and relevant feedback was 

coded to identify common themes regarding what participants found challenging, confusing, or recommend improving 

beyond the core AiTR capability being evaluated. Preliminary requirements and concept designs were generated based 

on participant feedback. We also reexamined task performance metrics to identify areas of improvement.  

Figure 2. Summary figure of Bobb et al., 2022 evaluation. A. Layout of combat scenario environment. Blue 

boxes show friendly guard tower positions relative to the participant’s guard tower view (yellow outlined inset).  

B. Example AiTR-AR highlighting through weapon-mounted optic. C. System evaluation timeline for participants. 
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Stakeholder Needs Assessment 

 

Semi-structured interviews were conducted with external stakeholders as part of a design review. Interview probes 

were adapted from the Human-Machine Teaming Knowledge Audit (Dominguez et al., 2020; McDermott et al., 2018). 

Three external stakeholders were interviewed to refine additional needs for the AiTR system. Stakeholders were 

specifically interested in developing capabilities for a weapon-mounted AiTR-AR system for dismounted soldiers. 

Prior to the interview, preliminary requirements and concept designs based on participant feedback were presented to 

an internal subject matter expert. After the interview with external stakeholders, feedback was reviewed to refine the 

documented set of use cases and system requirements. Based on these requirements, a plan was specified for how to 

iteratively develop and evaluate the system using the VR testbed developed for the prior system evaluation.  

 

RESULTS 

 

Participant Needs After VR Evaluation 

 

Previously, we focused our analysis of participant responses on the usability of the AiTR-AR system itself. In 

reviewing participant responses with the goal of identifying more general challenges encountered, we identified two 

major themes: 1) difficultly identifying where enemy fire was coming from to maintain adequate cover; and 2) the 

need for better collaboration with squad members to engage targets out of range. Almost all participants reported 

difficulty engaging targets that were too distant while avoiding incoming fire. For example, Participant 5 reported this 

and noted “more help from my teammates in other [guard]towers” was necessary. Participant 3 noted the most 

challenging aspect of the experience was “locating distant enemies, [and] remembering to take cover.” Even when not 

being targeted by an adversary, Participant 1 noted he was frustrated he could not effectively engage an enemy he 

spotted due to obstacles in his line-of-sight -- “I had to wait for the tower guard to take him out.” As there was no 

method to communicate with team members, this limited the potential for participants to coordinate.  

 

In terms of performance, participants generally failed at the task of defending assets from adversarial forces. Two-

thirds of participants lost all assets they were defending on the unaided condition and, even with the AiTR-AR system, 

half of participants lost all assets. This suggests that while the AiTR-AR system helped participants engage targets 

more effectively and, thus, better defend the assets, there was still considerable room for improvement. A more 

effective AiTR-AR system could help prioritize which targets to engage with, reducing cognitive load on the operator 

and keeping them focused on mission objectives. Similarly, we saw that the AiTR-AR system led to significant 

reductions in the amount of enemy fire taken by the participant. We hypothesized that the AiTR-AR system enabled 

participants to identify and engage with targets more quickly during intervals when they may be exposed to enemy 

fire. A system that helped coordinate targets across the squad and prioritize which targets were necessary for a 

particular squad member to engage could further alleviate exposure times while preventing adversarial gains. Finally, 

when comparing participants with and without the AiTR-AR, while we observed significantly more lethal shots with 

aid of the AiTR-AR system (p = .03), we did not see a difference in overall shot accuracy (p = .82). However, a 

system that coordinated squad fire by assigning targets to squad members who were best positioned to engage could 

help improve accuracy and, in turn, lethality. Factoring individual skill levels into this target assignment could also 

boost individual and group-level lethality.  

 

Stakeholder Needs 

 

Stakeholders were primarily interested in refining computer vision capabilities for the AiTR-AR system, including 

improving the robustness of detecting and tracking obscured targets. Stakeholders were also interested in estimating 

the distance and velocity of tracked targets using weapon-borne passive sensors. Current challenges of the AiTR-AR 

computer vision capabilities include “jumpy” tracking of targets that should be smoothed to avoid distracting or 

confusing the operator. Likewise, currently existing tracking algorithms had difficulty with obscuration, which made 

operators question their utility and reliability. By failing to track partially obscured targets that a human could easily 

identify (e.g., a person’s leg still being visible behind cover), this failure at basic reasoning was hampering the trust 

operators had for the technology. Thus, a primary requirement of the system was to ensure detection and tracking of 

human targets be robust to obscuration. Another challenge was when tracking algorithms failed to persistently track a 

specific human as they cross paths with other humans. The envisioned system should be able to detect all humans in 

a scene and then the operator should be able to “tag” one human (i.e., identifying them as a known or observed threat) 

for persistent tracking. To achieve this, the system should be able to learn the features of that target on the fly. 



 
 

 

2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC 2022 Paper No. 22240 Page 6 of 13 

 

For hardware, the system will have a wide-angled camera to maintain tracking targets in a wide field-of-view. In the 

digital overlay, stakeholders envisioned an arrow in the digital overlay could guide operators to the target, pointing 

them in an appropriate direction. One stakeholder likened it to the challenge of guiding someone through verbal cues 

to acquire a target down range, such as following the tree line to a certain distance before scanning across the field. 

 

The ability to passively range targets (i.e., without the use of the laser rangefinder) was also of interest, so the ballistic 

computer could automatically adjust the sight with minimal intervention. In addition to the target range, estimating 

target heading and velocity would also aid in ballistic adjustments and situation awareness. Providing estimate 

accuracies to the operator may be helpful to judge whether adjustments can be trusted to increase hit probability.  

 

Stakeholders expressed there was great interest in the AiTR-AR system being able to share data to enable a “common 

battlefield perspective.” Stakeholders, who were primarily interested in developing capabilities for a weapon-mounted 

system, said their main priority was to increase soldier lethality. They contrasted this primary objective with the more 

general goal of increasing situation awareness. For example, an AiTR-AR system that could receive information from 

elsewhere in the common battlefield network could provide individual dismounted soldiers a targeting queue. By 

sharing “target reference points,” squad members could maintain tracking targets and “hand off” that target’s location 

to each other, autonomies (e.g., unmanned aerial/ground vehicles, UAVs/UGVs), or another squad. Stakeholders 

encouraged us to explore solutions without worrying about the specific capabilities of any given networking solution. 

When we pressed to understand what a reasonable transmission range could be, we were told to focus on potential 

performance gains at a variety of ranges, as increases in squad lethality at any scale could help motivate determining 

an appropriate solution. More importantly, solutions would be constrained by the size, weight, and power limitations 

that were feasible for individual dismounted soldiers.  

 

Stakeholders agreed the use of simulations, such as virtual reality, were helpful in evaluating first-hand the 

performance of algorithms. While the VR simulation might not exactly represent the complexities of real-world 

operations, it is beneficial to have the ability to assess potential performance gains for a capability. This could provide 

rationale to push development for a field-deployable system.  

 

Revised System Needs and Design 

 

Table 1 shows high-level user needs identified from participants and stakeholders to guide system design henceforth. 

Utilizing our existing VR testbeds capabilities, we sought an approach to demonstrate how an IDA could aid in 

coordinating the dismounted squad, as well as squad-embedded autonomies. This team coordination agent could 

provide a joint plan based on the shared goals of the squad and communicate the joint plan to individual human 

teammates in an explainable way based on theory of mind techniques to infer mental models of human teammates.  

 

Table 1. High-level user stories for revised system based on participant and stakeholder feedback. 

As a dismounted soldier, I want… …so that… 

To evaluate AiTR systems with my squad members I can understand how they impact group performance 

To evaluate an accurate representation of an AiTR in 

VR 

I can learn the new capabilities of the system and 

determine if it meets my needs for field testing 

To evaluate how well the AiTR detects targets I can ensure it will serve my needs on the battlefield, such 

as detecting targets under degraded visual conditions 

To evaluate how well the AiTR tracks targets  I can ensure it will serve my needs on the battlefield 

To evaluate the passive ranging capabilities of the 

AiTR 

I can evaluate how well the AiTR passive ranging 

capability helps extend my lethality range 

To communicate target information with my squad We can share knowledge and coordinate 

To be able to receive objective metrics of how my 

team performed on the task 

I can track how well the AiTR improves performance, as 

well as how well my team is trained to utilize the AiTR 
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An Iterative Three-Phase Approach to Developing Team-Aware Planning Agents 

 

To develop a team coordination IDA, we propose a three-phase human-centered design framework for iterative 

development and evaluation of personalized, adaptive multi-human multi-agent team coordination agents (Figure 3). 

Following the principles of human-centered design, the core philosophy of this approach is to enable rapid, hands-on 

prototyping of AI/ML capabilities by maintaining a continuous design, development, and virtual training environment 

for both humans and autonomies. The three phases include: 

  

• Phase 1: All Synthetic Evaluations 

• Phase 2: Human-in-the-Loop Evaluations 

• Phase 3: Team-in-the-Loop Evaluations 

 

Using this approach, human- and team-in-the-loop testing and stakeholder feedback can be obtained rapidly based on 

phase transitions of minimally viable product increments. This approach is iterative, with models and designs 

receiving progressive validation, while test results and stakeholder feedback can be used to improve simulation fidelity 

and system capabilities in a previous phase. While the first phase includes fully synthetic proxies for humans, early 

testing with human research participants in virtual reality enables the collection of physiological and behavioral data 

to refine how humans perform under the simulated operational conditions. 

 

Henceforth, we will describe each of the three phases in more detail, including what design and research questions 

can be addressed at each stage, describe off-the-shelf capabilities that can be leveraged to implement each stage, and 

describe our preliminary approaches for implementing a system for coordinating individual and squad-level work.  

 
Figure 3.  A three-phase iterative approach for human-centered development and evaluation of personalized, 

adaptive team coordination agents with virtual reality. In Phase 1, synthetic agents are used to approximate 

human behaviors and train preliminary models for team coordination based on individual states, behaviors, 

strengths, and limitations. In Phase 2, individual human operators evaluate the UI/UX of the capability in the 

simulated operational environment. In Phase 3, multiple humans cooperate as a team to evaluate how the capability 

may complement and enhance teamwork performance. 
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Phase 1: All Synthetic Evaluations 

 

Phase 1 simulations include synthetic agents, both simulated humans and autonomies, completing a task in an 

environment (Figure 4). Simulations provide initial training for AI models based on increasingly higher fidelity 

simulations of agent behaviors and environmental/scenario simulations. Design and development of the simulation 

enables technologists and stakeholders to refine their common understanding of the task, its requirements, and critical 

decision points. Importantly, the Phase 1 simulation environment is designed with the intent to provide a simulation 

environment for human- and team-in-the-loop evaluation. Through this, not only can simulation fidelity and agent 

quality be validated, but synthetic human behavior can be refined through learning from actual humans in Phases 2 

and 3 (e.g., through imitation learning).  

 

In the example of developing a squad coordination agent, observations for the squad coordination agent include the 

fusion of information from both synthetic squad members and simulated autonomies. The environment is designed 

with the intention of providing the same operational scenarios for human-in-the-loop evaluation in subsequent phases. 

Unity ML-Agents is leveraged to provide access between the Unity simulation environment and Python machine 

learning toolkits (Juliani et al., 2020). Synthetic human characters in the simulation provide data for training a 

supervisor agent that has access to fused environmental observations. This supervisor agent recommends actions to 

individual synthetic team members. This supervisor-based hierarchical reinforcement learning approach has been 

implemented on Unity ML-Agents demo examples and resulted in superior performance results (Cao et al., 2020).  

 

While the Unity ML-Agents framework provides a powerful basis for implementing reinforcement learning 

paradigms, it includes a wrapper for enabling integration with the OpenAI Gym framework. The OpenAI Gym 

framework provides a common access point for exposing reinforcement learning components (i.e., state and action 

space, rewards) to additional frameworks [e.g., OpenAI Gym (Brockman et al., 2016), Stable Baselines3 (Raffin et 

al., 2021), DeepMind Acme (Hoffman et al., 2020)]. In addition to reinforcement learning packages, other algorithms 

can be leveraged to refine human-aware planning-based approaches for inferring agent policies (i.e., the strategy that 

an agent uses in pursuit of goals), implementing predictive analytics of agent behavior (i.e., what will the agent do 

next? how will the agent respond to change?), and providing explainable joint plans. Finally, trained models can be 

integrated back into Unity for real-time evaluation via the open neural network exchange (ONNX) format, which can 

be used to accept models from a variety of ML frameworks including TensorFlow, PyTorch, and Jax. 

 
Figure 4. Phase 1 overview. A team coordination agent can be trained to coordinate synthetic squad members and 

simulated autonomies using a variety of reinforcement learning toolkits. 
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Phase 2: Human-in-the-Loop Evaluations 

 

As simulations and trained models are validated in Phase 1, model actions must be translated into a user experience 

and user interface (UI/UX) suitable for Phase 2 human-in-the-loop evaluation (Figure 5). Phase 2 enables both hands-

on evaluation of UI/UX designs and AI model performance. Even prior to the development of ML models, UI/UX 

designs for how an IDA would provide feedback to the operator could be evaluated if heuristic approaches are 

available. For example, in Bobb et al., 2022, we evaluated an idealized threat detector, as the location of all threats 

were known in the simulation environment. This allowed us to demonstrate how the impact of the capability may be 

objectively evaluated, including performance and physiological measures, without the AI capability itself needing to 

be developed and integrated. We also created a workflow using the Unity Barracuda package (Scott et al., 2021) to 

integrate functional computer vision algorithms so they may be evaluated in the same environment. 

 

Using this same approach, we can evaluate an idealized squad coordination system. As an initial proof-of-concept, we 

implemented a scenario with favorable odds for the blue team squad. We limited the number of adversarial forces 

targeting squad members so that there was always at least one squad member not actively being targeted. This enabled 

a simple heuristic algorithm to be created, where blue team squad members not under fire could be advised to engage 

adversaries while others remained under cover. To demonstrate a UI/UX for human-in-the-loop testing, we modified 

the AiTR-AR interface to guide the operator to targets. We modified the voice AI assistant, RITA, to provide threat 

level warnings to assist in determining the risk associated with engaging.  

 

With this minimum viable demonstration of the team coordinator, the system can begin evaluation with humans-in-

the-loop to further refine and validate the needs of the capability. Hands-on evaluation of the UI/UX and AI can aid 

in prioritizing the need for additional feedback, such as changes to mission objectives, the status of autonomous 

capabilities, and personalizing feedback based on operator state estimation, including physiology and behavior. For 

example, soldier-borne sensors can be used to assess cognitive load and stress to adaptively adjust task load on squad 

members or minimize distractions in their AiTR-AR system. Weapon-borne sensors can be used to measure operator 

state, such as resting, tracking a target, transitioning between potential targets, and firing (Lee et al., 2022). 

Autonomies, such as miniature UAVs, can be directed to targets and provide operators advanced warning regarding 

target movement patterns behind cover. Shot accuracy measurements taken from the AiTR-AR system could also be 

used to adjust target assignment within the squad, providing squad members with targets they are best able to engage 

based on real-time assessment of their performance. 

 

Finally, by integrating human research participants in Phase 2, ML approaches such as imitation learning can be 

leveraged to train more realistic Phase 1 synthetic agents. More simply, reaction time measures gathered during Phase 

2 evaluations can be used to create more realistic Phase 1 agent simulations. These additional constraints during Phase 

1 agent training could improve the ecological validity of AI models trained in simulations.  

 
Figure 5. Phase 2 overview.  An individual human operator evaluates a team coordination agent coordinating a multi-

human multi-agent team to perform tasks in a simulated operational scenario.  
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Phase 3: Team-in-the-Loop Evaluations 

 

For a team coordination agent to be validated under simulated operational conditions, team-in-the-loop evaluation is 

necessary to demonstrate all human factors are addressed. Thus, in Phase 3, networking of VR clients with real-time 

communication channels is used to evaluate performance (Figure 6).  

 

Like Phase 2, Phase 3 team-in-the-loop evaluations can begin using a heuristic approach that does not require model 

training, only a minimal viable UI/UX to demonstrate how the capability could function under a set of controlled 

scenarios. From there, a primary objective can be validation of the minimum viable capability. Individual and group 

feedback can be obtained to refine the system’s requirements, as well as the requirements of the evaluation scenario. 

While it is reasonable to expect a team coordination agent could perform target allocation under some set of 

assumptions with efficiency exceeding team performance without the agent, there are an endless number of 

unpredictable scenarios requiring human individual and collective decision-making to adequately assess. Thus, the 

team coordination agent should be thought of as increasing squad efficiency in a complementary way, recommending 

explainable decisions while also allowing for team communication to override decisions that human judgement can 

determine is suboptimal (Bansal et al., 2021). Sensor streams, such as voice communication between team members 

and behavioral actions, can be analyzed to determine how this information may be used to provide further inputs into 

the decision-making process of the team coordination agent. For example, the content of voice communications can 

be analyzed to detect and refine representations of operator beliefs, desires, and intentions. Likewise, vocal content 

and tone could also be used to measure operator state, such as stress (Van Puyvelde et al., 2018). 

 

Like Phase 2, by integrating teams in Phase 3, ML approaches can be leveraged to train more realistic Phase 1/2 

synthetic agents to behave in patterns drawn from the behavior of actual human teams. This can include refining 

interactions with synthetic squad members during Phase 2 evaluations. While all phases require some objective metric 

to assess the performance of the AI capability, team-level performance metrics may be particularly critical for 

demonstrating gains obtained with the AI capability. Early Phase 3 evaluations using heuristic approaches can be used 

to refine the content of objective team performance metrics. Teamwork performance metrics can be difficult to define 

and evaluate due to the complex cognitive and social components that lead to effective teamwork. Through an iterative 

evaluation of the system with stakeholders and test participants, task relevant teamwork performance metrics could 

be refined in conjunction with the design of the entire system. These performance metrics could also be used to 

repurpose the system for mission training, such as being implemented as an external assessment engine in the 

Generalized Intelligent Framework for Tutoring (Sottilare et al., 2012; Vatral et al., 2022). 

 
Figure 6. Phrase 3 overview. A team of humans evaluate a team coordination agent coordinating a multi-human 

multi-agent team in a simulated operational scenario. Human participants’ behavior and physiology are monitored 

using a VR system with integrated sensors. Realtime processing of physiological and behavioral data can be fed 

into the team coordination agent’s observations. This data can further refine the agent’s recommended actions to 

meet the needs of both individuals and the team, as well as objectively evaluate the impact of the system on 

operators. Image of VR headset with integrated EEG provided by Wearable Sensing (San Diego, CA).   
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DISCUSSION 

 

While an AiTR-AR system can improve individual task performance, further performance gains may be realized by 

coordinating target allocation at the squad-level. When reviewing the performance of a rifle-mounted AiTR-AR 

system, evaluation participants and stakeholders suggested ways a team coordination agent could improve squad 

coordination. Coordinating target allocation through an IDA could improve squad lethality while reducing cognitive 

burden by focusing attention on assigned targets. IDAs that track user capabilities, behaviors, and states (e.g., intent 

to engage a target, taking enemy fire) could further enhance teamwork performance. Human aware planning applied 

to multi-human multi-agent teams provides a general framework for designing autonomies that can infer both operator 

and adversarial intent, develop a joint plan, and provide human operators with explainable planning decisions.  

 

We defined a three-stage approach to develop and evaluate a team coordination AI for multi-human multi-agent teams. 

While we are using this framework to design a team coordination AI for the dismounted soldier through a rifle-

mounted AR display, this approach is applicable to any teaming capability that can be simulated and tested in VR. By 

leveraging VR, the AI UI/UX can be evaluated with human operators early in development process. Heuristics that 

leverage absolute knowledge of the virtual environment can be used to evaluate potential performance gains before 

any AI model training is necessary. Human- and team-in-the-loop evaluations can be used to both refine system user 

needs as well as synthetic human model behaviors utilized for training. 

 

We utilized Unity as a general-purposes development environment as it enables complex agent-based simulations, 

including a comprehensive and extensible toolkit for reinforcement learning and ML model integration. Unity also 

allows for platform-independent VR, physiological sensor integration, and multi-client networking. Unity-based ML 

agent training has previously been utilized in the development of adaptive synthetic characters in dismounted soldier 

simulations for training (Liu et al., 2021; Ustun et al., 2020). In contrast, our primary objective is to utilize 

reinforcement learning to improve team coordination, although ML approaches may also be utilized in our approach 

to improve synthetic human behaviors. Our approach utilizes early human- and team-in-the-loop evaluations to 

improve synthetic agent behaviors to provide a more representative proxy during team coordination agent training. 

This can include straightforward measures (e.g., reaction times), as well as more subtle behaviors that may be 

enhanced from relatively few training samples such as verbal (Reed et al., 2021) and nonverbal (Punzi et al., 2022) 

communication. Our approach is complementary to emerging human-machine teaming design frameworks based 

around user-centric design and validation (Dominguez et al., 2020; McDermott et al., 2018; Scielzo et al., 2021).  

 

CONCLUSION 

 

We describe an iterative three-phase framework to aid development of teamwork-promoting autonomous capabilities: 

Phase 1: Synthetic agents approximate human behaviors to train AI models for team coordination. 

Phase 2: Individual human operators evaluate the UI/UX in the simulated operational environment.  

Phase 3: Humans teams evaluate how the capability may complement and enhance teamwork performance.  

Qualitative and quantitative feedback from each phase can be used to improve simulation fidelity, AI performance, 

and the UI/UX of the system. Key benefits of this approach are to enable:  

• Efficient use of development resources via a continuous workflow from ML to human-in-the-loop evaluation. 

• Iterative, human-centered design to enhance autonomy performance and teammate acceptance. 

• A VR system that can be used for the training and evaluation of future teams to interact with the autonomy. 
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