
Adversarial Machine Learning for Enhanced Spread
Spectrum Communications

Mohamed K. M. Fadul and Donald R. Reising
Electrical Engineering Department

University of Tennessee at Chattanooga
{mohammed-fadul, donald-reising}@utc.edu

K.T. Arasu and Michael R. Clark
Open Innovation Center

Riverside Research
{karasu, mclark}@riversideresearch.org

Abstract—Recently deep learning has demonstrated much suc-
cess within the fields of image and natural language processing,
facial recognition, and computer vision. The success is attributed
to large, accessible databases and deep learning’s ability to learn
highly accurate models. Thus, deep learning is being investigated
as a viable end-to-end approach to digital communications design.
This work investigates the use of adversarial deep learning
to ensure that a radio can communicate covertly, via Direct
Sequence Spread Spectrum (DSSS), with another while a third
(the adversary) is actively attempting to detect, intercept and
exploit their communications. The adversary’s ability to detect
and exploit the DSSS signals is hindered by: (i) generating a set
of spreading codes that are balanced and result in low side lobes
as well as (ii) actively adapting the encoding scheme. Lastly,
DSSS communications performance is assessed using energy
constrained devices to accurately portray IoT and IoBT device
limitations.

Index Terms—Deep Learning, DSSS, Adversarial Learning,
IoT, Internet of Battlefield Things (IoBT)

I. INTRODUCTION

Deep Learning (DL) has demonstrated success within the
fields of image and natural language processing, facial recog-
nition, as well as computer vision. This success is due in large
part to the presence of and access to large training databases
(e.g., MNIST, COCO, & KITTI databases) and DL’s ability
to learn models capable of achieving high levels of accuracy
beyond those of human derived mathematical models. Over the
past few years, DL has been put forward as a viable solution
for many challenges facing modern communication systems
such as: spectrum management [1], [2], modulation and radio
identification [3]–[6], as well as design [3], [7]–[9]. The focus
herein is on the use of DL for communications system design.

It has been asserted that Artificial Intelligence (AI) and its
subset DL is critical to future communications system design
and operation due to ever increasing complexity [9]. This com-
plexity is attributed to the inherited engineering trade-offs that
were made during the design and implementation of previous
communication systems as well as impairments (e.g., the chan-
nel, radio hardware, interference) that exist during operations.
The resulting technological complexity must be navigated
and overcome during the development and fielding of new
communications systems. Although not a new challenge, this
complexity is exacerbated by: (i) the explosive proliferation
of wireless communication systems due to increasing Internet

of Things (IoT) and Internet of Battlefield Things (IoBT) de-
ployments [10]–[13], (ii) the employment of AI within military
and other radio applications (e.g., cognitive radio) [9], [11],
as well as (iii) increasing threats within the electromagnetic
spectrum [14]. Such complexities can overwhelm traditional
communications system design approaches that rely upon
tractable mathematical models, especially when such models
are difficult to create or missing altogether. However, DL has
shown to be a viable alternative in such cases, because it
thrives as more information becomes available. An additional
benefit to DL is its flexibility, which is enabled by the relative
ease at which it can be re-trained in near real-time when
environmental conditions change. Such flexibility is lacking
within human developed communications systems that require
months to achieve an equivalent re-design [9].

The published works [3], [7]–[9], [15]–[17] demonstrate
DL driven communications. In comparison to conventional
approaches, these works show that DL achieves superior
performance for: (i) maximizing capacity when multiple radios
communicate over a common channel, (ii) integration of expert
knowledge (e.g., channel equalization) within the DL model,
(iii) modulation recognition, (iv) signal compression, (v) signal
detection, and (vi) adapting transmitter impairments (e.g., the
channel and RF front-end) [3], [7]–[9]. The works in [15]–
[17] are of particular interest to the work presented herein
due to their contributions within the area of DL driven:
DSSS, communications security, or the combination thereof. In
[16], Shakeel presents two DL approaches that improve DSSS
system security by generating communications signals devoid
of certain well-understood mathematical features and without
secret information. Wei et al. [15] studies blind estimation
of a DSSS system’s length 31 Pseudo-Random Noise (PRN)
sequences and motivates our use of adversarial training. The
research presented in [17] teaches Neural Networks (NNs) to
communicate securely using a secret key.

In this work, we leverage DL to implement a Genera-
tive Adversarial Network (GAN) inspired approach to en-
sure that a transmitter (a.k.a., Alice) and receiver (a.k.a.,
Bob) can communicate—using Direct Sequence Spread Spec-
trum (DSSS)—while actively inhibiting an adversary’s (a.k.a.,
Eve’s) ability to detect and reconstruct the intercepted mes-
sages’ information. Our contributions are:
• A special set of 15 bit “select” spreading codes are generated

MILCOM 2021 - Special Session on Internet of Battlefield Things

978-1-6654-3956-5/21/$31.00 ©2021 IEEE 783

M
IL

CO
M

 2
02

1 
- 2

02
1 

IE
EE

 M
ili

ta
ry

 C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e 

(M
IL

CO
M

) |
 9

78
-1

-6
65

4-
39

56
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
IL

CO
M

52
59

6.
20

21
.9

65
29

11

Authorized licensed use limited to: Riverside Research. Downloaded on November 01,2024 at 20:49:26 UTC from IEEE Xplore.  Restrictions apply. 



to adhere to balance and low side lobe stipulations that are
unachievable using Gold, Kasami, and Weil code generation
techniques. These “select” spreading codes improve DL
model convergence during training.

• The introduction of spreading codes with the messages
to enhance DL driven featureless DSSS signaling, which
improves jamming resiliency, and Low Probability of De-
tect/Intercept (LPD/LPI) performance beyond that in [16].

• The use of adversarial training and a learned, shared-
encryption scheme that improves DSSS system security.

• The use of multiple spreading codes instead of one shared
code to improve the system’s LPD.

• The discovery that low Peak Side Lobe (PSL) spreading
sequences improve model convergence.

• The transmitter energy is constrained to more accurately
capture the resource limitations that exist within many IoT
and IoBT applications, which contradicts the work in [16].

The paper is organized as follows: Sect. II describes the
adversary, Sect. III covers spreading code generation as well
as the DL architecture and training, experimental results are
presented in Sect. IV, and Sect. V concludes the paper.

II. THREAT MODEL

This work adopts a threat model that is inspired by the
works in [17]–[21]. Eve is categorized as an on-path adversary
because it is the most capable. Eve possesses the ability to ob-
serve and transmit in real-time, which allows it to spoof, inject,
remove, and alter traffic. Therefore, it is assumed that Eve has
access to or knowledge of the software applications needed
to modify its own transceiver settings and the computational
resources required to carry out its attack [19]. We also assume
that Eve makes use of the same DL architecture as Alice and
Bob, thus making Eve a peer of Alice and Bob in terms of
capability. Eve is not an authorized user within the targeted
DSSS communications system, thus Eve does not have inher-
ent access to the spreading codes nor any of the radios and
support devices that form the communications network. Lastly,
it is assumed that the hardware and links comprising the DSSS
communications network are not initially compromised.

Of particular interest is Eve’s ability to continuously eaves-
drop on the communications between Alice and Bob with the
goal of “learning” the spreading code or codes through non-
cooperative, direct, and persistent detection and interception of
the DSSS signal. If Eve is able to learn the spreading codes,
then Eve will be able to access the transmitted message [20].

III. METHODOLOGY

A. PRN Sequence Generation

DSSS is a spread spectrum technique, wherein the original
data signal is multiplied with a PRN spreading code [22].
PRN is enabled by perfect periodic auto-correlation sequences.
The celebrated waveform, known as m-sequence, is a type of
pseudo-random bit sequence generated using maximal linear
feedback shift register. Popular spreading codes are Gold
codes [23], the 1023-length of which, are used for the Global
Positioning System (GPS) Coarse/Acquisition (C/A) signal.

Gold codes are generated using two m-sequences (a.k.a.,
preferred pair). A preferred pair of m-sequences of length
L generates a family of (L + 2) Gold codes of length L. A
relatively newer family of spreading sequences are Weil codes
[24], [25], which exist for any prime length sequence. For
length-p sequences, the corresponding family of Weil codes
has size K=0.5(p - 1). The GPS civilian-use signal uses Weil
codes. Kasami codes are generated using an m-sequences of
length 2N – 1 where N is an even positive integer, yielding
2(N/2) codes whose cross-correlations meet the Welch bound
[26], [27]. All these aforementioned sequences are generated
using finite fields, primitive polynomials and trace functions
[28]. Our AI inspired study requires several hundreds of
spreading sequences of a very modest length of 15 bits, which
is consistent with the works [15], [17]. These 15 bit codes
must satisfy the two stipulations of: (i) being “balanced” and
(ii) possessing “low side lobes”. Good balance requires the
number of ones and zeros to be nearly equal. A simple linear
function maps x to 2x−1, which sends 0 to −1 and 1 to 1. We
use this mapping to deal with bi-polar sequences (with entries
1 and −1) instead of binary sequences. For our 15 bit codes,
balanced spreading codes are comprised of exactly eight 1’s
and seven -1’s.

The largest absolute value of all side lobes is denoted as
the PSL. Low PSL is extremely important when selecting the
spreading sequences for training the Neural Network (NN)
because low PSL improves model convergence. Gold, Weil
and Kasami codes are incapable of generating hundreds of
15 bit codes that meet the required stipulations. Thus, we
generate the required number of L=15 spreading codes using
a brute-force approach while stipulating “balance” and “low
PSL” requirements. There are only thirty perfect sequences
(i.e., the PSL equals 1). When the sequences adhere to the
balanced stipulation, none of them satisfy PSL equal to 3,
however when the PSL is equal to 5 a total of 3,270 spreading
sequences can be generated.

B. Model Architecture and Training

The multi-agent system considered in this work is com-
prised of three parties: Alice, Bob, and Eve. Fig. 1 shows
a block diagram of the considered communication scenario.
Alice tries to send the message to Bob correctly using a
spreading code from a codebook that is available to both
Alice and Bob. As the adversary, Eve is attempting to detect,

Message Transmitter
(Alice)

Channel
(AWGN)

Spreading
Code

Receiver
(Bob)

Adversary
(Eve)

Fig. 1. Block diagram of the multi-agent DSSS system.

MILCOM 2021 - Special Session on Internet of Battlefield Things

784
Authorized licensed use limited to: Riverside Research. Downloaded on November 01,2024 at 20:49:26 UTC from IEEE Xplore.  Restrictions apply. 



intercept, and exploit the communications between Alice and
Bob with the explicit goal of recovering the message sent by
Alice. Although Eve does not have access to the codebook,
Eve attempts to learn the spreading code used by Alice and
Bob without prior knowledge of the specific spreading code
used nor those remaining in the codebook. An AWGN channel
model is used with zero mean and βI co-variance matrix
where β depends on the channel signal-to-noise ratio (SNR).

The output of Alice, Bob, and Eve are respectively denoted
as A(θA,M,K), B(θB , Y,K), and E(θE , Y ) where θA, θB ,
and θE are NN parameters, M is the original message, Y is
the output of the channel, and K is the spreading code. To
minimize Eve’s reconstruction error, we use the loss function,

LE(θA, θE) = EM,K(d{M,E[θE , A(θA,M,K)]}), (1)

d(M,M ′) =
N∑
i=1

|Mi −Mi
′|, (2)

where EM,K is the expected value over the distribution of
M and K [17]. Eve’s optimum parameters are determined by
minimizing its loss function with respect to Alice as follows,

OE(θA) = arg min
θE

[LE(θA, θE)] , (3)

and the loss function for Bob is given by,

LB(θA, θB) = EM,K{d[M,B(θB , A(θA,M,K),K)]}. (4)

The whole system is treated as a Multiple-Input and Multiple-
Output (MIMO) NN. Using the combined loss function given
in (5), the system—a.k.a., Alice, Bob & Eve—is jointly trained
with the purpose of minimizing Bob’s reconstruction error
while increasing Eve’s.

LAB(θA, θB) = LB(θA, θB)− LE [θA, OE(θA)] (5)

The subtraction in (5) shows that the optimization of Bob’s
reconstruction error is working against Eve’s. Similar to Eve,
the optimum parameters for Alice and Bob are determined by,

(OA, OB) = arg min
θA,θB

[LAB(θA, θB)] . (6)

Alice and Bob are initialized using random parameters and
iterative training conducted. The model is then trained for Eve
until the optimum parameters OE are computed. Finally, the
model is trained for Alice and Bob using the combined loss
function LAB to find the optimum parameters (OA, OB) that
enable Alice and Bob to defeat the best version of Eve.

The architecture of Alice, Bob, and Eve is detailed in
Table I. The architectures for Bob and Eve are similar except
the dimension of the first layer. The 1D convolutional layer’s
dimension is given by: number of filters × size of the filter ×
stride. The size of the message M is 16 bits with entries of
either a −1 or 1. Alice’s batch normalization layer is used to
apply a transmission energy constraint. The work in [16] did
not apply energy constraints, which can significantly impact
system performance and assessment results by allowing indi-
vidual entries within the spread signal to exceed a magnitude

TABLE I
THE CONFIGURATION AND VALUES FOR THE NEURAL NETWORKS

ASSOCIATED WITH THE GAN INSPIRED ARCHITECTURE USED REPRESENT
THE TRANSMITTER (ALICE), RECEIVER (BOB), AND ADVERSARY (EVE).

of 1. Such a result can bias Bob and Eve to favor these entries
during training and message recovery. Thus, a transmission
energy constraint of,

||x||22 ≤ n, (7)

is adopted, where x is the spread signal at the output of
Alice and n is the number of bits in x [3]. This constraint
ensures that the magnitude of each entry in x does not exceed
1. The size of the spreading code K is set to 15 bits and
chosen if it has the properties described in Sect. III-A. Both
the original message, M , and spreading code, K, are assumed
to be uniformly distributed.

IV. EXPERIMENTAL RESULTS

A. Assessment of Low Probability of Detection

This experiment assesses the LPD nature of the DSSS
communications system shown in Fig. 1. Our work integrates
Auto-Correlation-based Detection (ACD) to provide Eve with
a method by which to detect the DSSS signals sent by Alice.
Selection of the ACD detector is motivated by its superior
low SNR performance with the lowest computation [29]. In
accordance with our threat model, Sect. II, we assume that
Eve is continuously sensing the channel and applying the ACD
method periodically. Detection performance is measured using
probability of detection, Pd. If the input signal at Bob and Eve
is s[n], then the Power Spectral Density (PSD) of s[n] is,

P̃ [k] =
1

Ns
|S[k]|2, (8)

MILCOM 2021 - Special Session on Internet of Battlefield Things

785
Authorized licensed use limited to: Riverside Research. Downloaded on November 01,2024 at 20:49:26 UTC from IEEE Xplore.  Restrictions apply. 



where S[k] is the Fourier transform of s[n], and Ns is the
number of samples comprising s[n]. After calculating the PSD,
P̃ [k], the auto-correlation function is computed,

r[m] =
1

Ns

Ns−1∑
k=0

P̃ [k] exp

(
i2πkm

Ns

)
, (9)

where m=0, 1, . . . , Ns − 1 [29]. Using the auto-correlation,
the decision variable is determined,

Ds =

1

Υ

Υ∑
l=1

|r[l]|2

1

η −Υ

η−Υ∑
j=1

|r[j]|2
, (10)

where η is the length of the auto-correlation sequence, Υ is
the number of auto-correlation peaks above τr, which is,

τr =
1

2
max r[m], (11)

where r[j]=r[m] ≥ τr, and r[l]=r[m]<τr. DSSS signal
detection is conducted using two hypotheses,

H0 : Ds < λ, (12)
H1 : Ds ≥ λ, (13)

where the null hypothesis, H0, represents the case of “no
signal detected” and the alternative hypothesis, H1, is the case
of “signal detected”. The detection decision threshold is,

λ =

∣∣∣∣∣∣
√

2(σ2)2

2Ns + 1
log(Pf )

∣∣∣∣∣∣ , (14)

where σ is the variance of s[n] and Pf=0.1 is the threshold
probability of false alarm.

The network in Fig. 1 is trained for three different LPD as-
sessments: Scenario #1: A spreading code is randomly chosen
from a uniformly distributed set of spreading codes and used
to spread 25,000 messages, Scenario #2: A spreading code
is randomly chosen from the 3,270 set of “select codes” and
used to spread 25,000 messages, and Scenario #3: A total of
2,638 spreading codes are chosen from the 3,270 set of “select
codes” and each used to spread 10 messages.

The first two scenarios are assessed using a blind test
set of spread signals constructed using 100,000 messages and
the spreading code chosen for the selected LPD assessment
scenario. These spread signals are not part of the spread
signal set used to train either of the networks. As with the
first two scenarios, the third scenario is also assessed using
blind testing. The set of spread signals, used to test the third
scenario, are generated by selecting 600 spreading codes and
using each of them to spread a total of 100 messages, thus this
test set is comprised of 60,000 spread signals. It is important
to note that the 600 spreading codes, used for testing, are
not part of the 2,638 spreading codes used to generate the
training signals set. Every spread signal passes through the
channel layer, which adds scaled AWGN to achieve SNRs
from -21 dB up to 0 dB in steps of 3 dB. These noisy spread

-20 -15 -10 -5 0

0

10

20

30

40

50

60

70

80

90

100

%
 D

e
te

c
ti

o
n

Scenario #1

Scenario #2

Scenario #3

Fig. 2. Eve’s average percent detection, Pd, performance for each of the
three LPD assessment scenarios: one spreading code drawn from a uniform
distribution (solid red line, ◦), one spreading code drawn from the set of
3,270 “select” codes (dashed blue line, �), and 600 “select” spreading codes
(dashed black line, �) generated using an ACD detector at SNRs from -21 dB
to 0 dB in 3 dB increments.

signals are the inputs to the ACD detector. For each SNR,
percent detection, Pd, is calculated by dividing the number of
times a spread signal is correctly detected by the total number
of spread signals transmitted by Alice. Fig. 2 shows percent
detection performance for each of the three LPD assessment
scenarios when Eve employs an ACD detector. For scenario #1
and #2, Eve is able to detect the presence of the corresponding
DSSS signals with accuracy of 75% or higher at SNRs of
−12 dB or higher. For scenario #3, Eve is able to detect the
presence of the DSSS signal with an accuracy of 70%, and no
higher, at SNRs of -6 dB or higher. Although the LPD nature
of the spread signals of scenario #3 is better than that of the
other two scenarios, Eve is still capable of determining that
a DSSS signal is present within the channel. Thus, Alice and
Bob need to take a more proactive approach to ensure that
Eve is not able to exploit the detected DSSS signals.

B. DSSS Training Evolution

This experiment depicts the training evolution of Alice,
Bob, and Eve in the adversarial scenario described in Sect. III
and illustrated in Fig. 1. The network architecture shown in
Fig. 1 and Table I is implemented in Tensorflow 2.0. The
architectures of Alice, Bob, and Eve are similar with the
exception for the dimension of their first layers. Alice’s first
layer accepts a 31 bit input that is constructed by concatenating
the M=16 bit message with the K=15 bit spreading code.
Bob’s network accepts a 271 bit length input, which is Alice’s
L=256 bit DSSS signal concatenated with the K=15 bit
spreading code. Eve’s network accepts a L=256 input, because
Eve only has access to Alice’s transmitted DSSS signal.
An alternating approach is used to train the networks rep-

resenting Alice, Bob, and Eve. In this approach, Alice and
Bob are trained for one mini-batch, and Eve is trained for
two mini-batches per training iteration. The mini-batch size
is set to 4,096 to speed up the computations. The networks
in Fig. 1 are trained using the Tensorflow Adam optimizer

MILCOM 2021 - Special Session on Internet of Battlefield Things

786
Authorized licensed use limited to: Riverside Research. Downloaded on November 01,2024 at 20:49:26 UTC from IEEE Xplore.  Restrictions apply. 



using a learning rate of 800 × 10−6. For each training step,
Eve’s loss function is calculated using the `1-norm in equation
(1). Bob’s loss function consists of two components: (i) the
reconstruction error that is computed using the `1-norm and
(ii) a value based upon Eve’s reconstruction error,(

M

2
− εE

)2(
M

2

)−2

, (15)

where εE is Eve’s reconstruction error. Equation (15) returns
zero whenever εE=8. The loss function, employed by Bob,
is configured to reduce Eve’s probability of correctly recon-
structing the message to no better than a random guess.

Two spreading code generation cases are used to enable
comparative assessment: (i) 3,238 spreading codes are ran-
domly chosen from a uniformly distributed code set and (ii)
3,238 spreading codes are randomly chosen from the “select”
set of 3,270 codes that are generated to satisfy the balance and
low side lobe stipulations. For each case, the chosen spreading
codes are divided into training and testing sets comprised of
2,638 and 600 spreading codes, respectively. Alice generates
DSSS signals by using every code, in the training and test
sets, to spread ten M=16 bit messages that are randomly
drawn from a uniform distribution. Training performance is
measured by counting the number of bit errors present in the
reconstructed messages output by Bob and Eve at the end of
every training step. The total number of training steps is,

NT =
Ne
Nb

, (16)

where Ne is the total size of the training set for each
assessment case and Nb is the size of the mini-batch.

Bob’s and Eve’s reconstruction error is shown in Fig. 3 for
both spreading code generation cases after 1,000 epochs and
at an SNR of 9 dB. Bob’s reconstruction error is designated
as εBU and εBS for the uniform and “select” spreading codes,

1 101 201 301 401 501 601 701 801 901

0

10

20

30

40

50

%
 B

it
 R

e
c
o
n
s
tr

u
c
ti

o
n
 E

rr
o
r

Fig. 3. Reconstruction error after 1,000 epochs for both spreading code
assessment cases when: the message is comprised of M=16 bits, the
spreading codes are K=15 bits in length, and the DSSS signals are of length
L=256 at an SNR of 9 db. Bob’s reconstruction error is designated as εBU
and εBS for the uniformly and “select” generated spreading codes respectively.
Similar to Bob, Eve’s reconstruction error is designated as εEU for the uniform
spreading codes and εES for the “select” spreading codes.

respectively. Similar to Bob, Eve’s reconstruction error is
denoted as εEU for the uniform spreading codes and εES for the
“select” spreading codes. In the beginning of the assessment
(i.e., less than 25 epochs), Bob’s and Eve’s reconstruction error
decreases for both cases, thus showing Eve’s ability to “break”
the basic encoding used by Alice and Bob. However, Alice and
Bob learn an alternative encoding scheme that depends more
upon the spreading code, that is unavailable to Eve, after 100
epochs for the uniformly generated spreading codes and 30
epochs for the “select” spreading codes. For these assessments,
Bob’s and Eve’s models are converging as the number of bit
errors within the reconstructed messages approach zero and
M/2=8, respectively. An error threshold of 0.05 for Bob and
M/2 ± 2 for Eve is used to confirm convergence of their
respective models [30]. Alice and Bob’s use of the “select”
spreading codes result in a faster convergence, approximately
75 epochs faster when compared to the uniform spreading
codes, of Bob’s ability and Eve’s inability to reconstruct the
messages sent by Alice, Fig. 3. Additionally, the “select”
spreading codes resulted in model convergence for all 15 runs
versus 11 of 15 when using uniform spreading codes.

C. Block Error Rate

For this experiment, Bob’s network is trained using the
AWGN channel in Fig. 1 at an SNR of 9 dB and DSSS
signals, of length L=[32, 64, 128, 256], that are generated
using the “select” spreading codes. Performance is measured
using Block Error Rate (BLER) in which the message is
considered “successfully reconstructed” if the message bits,
recovered by Bob, are the same as the corresponding bits
within the original message sent by Alice. Fig. 4 shows Bob’s
BLER performance at SNR∈[0, 30] dB in 3 dB steps for
each of the four investigated spread signal lengths. It can be
seen that as L increases Bob’s BLER decreases, which is due
to the transmit energy constraint that we have placed upon
Alice. This constraint captures the energy limitations that exist
within many IoT and IoBT devices. The energy constraint is
ensured by Alice’s batch normalization layer, which maintains
the same total energy across the spread signals regardless of

0 5 10 15 20 25 30

10
-3

10
-2

10
-1

10
0

Fig. 4. Bob’s BLER performance when Alice transmits DSSS signals of
length L equal to 32 (∗), 64 (�), 128 (�), and 256 (◦) bits at SNR ∈ [0,
30] dB in 3 dB steps. Alice uses the “select” spreading codes.

MILCOM 2021 - Special Session on Internet of Battlefield Things

787
Authorized licensed use limited to: Riverside Research. Downloaded on November 01,2024 at 20:49:26 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20 25 30

10
-3

10
-2

10
-1

10
0

Fig. 5. Bob’s BLER performance when Alice’s transmit energy is constrained
(dashed black line, �) versus when it is not (solid red line, ◦) at SNR ∈ [0,
30] dB in 3 dB steps. Alice uses the “select” spreading codes.

their length, L. Thus, for the results shown in Fig. 4, the energy
per transmitted bit decreases as L increases, which makes
the spread signal and Bob’s ability to recover the message
more susceptible to the AWGN channel’s negative impacts.
This observation is supported by the results shown in Fig. 5,
which shows BLER performance when the energy constraint
is enforced versus when it is not.

V. CONCLUSION

In this work, a GAN inspired DL approach is implemented
to facilitate DSSS-based communications between two coop-
erative entities, Alice (the transmitter) and Bob (the receiver),
within the presence of an adversary (a.k.a., Eve) actively at-
tempting to detect, intercept and exploit their communications.
The 15 bit spreading codes employed by Alice and Bob are
intentionally generated to adhere to specific balance and low
side lobe stipulations that are unachievable by Gold, Kasami,
and Weil codes. These “select” spreading codes hinder Eve’s
ability to detect the DSSS signals, but not stop it completely.
However, when these codes are combined with Alice and Bob
actively adapting the encoding scheme, then Eve loses the
ability to effectively reconstruct Alice’s messages from the de-
tected and intercepted DSSS signals. Additionally, the BLER
performance is assessed as the length of the spread signal
increases and when Alice’s transmit energy is constrained to
accurately emulate IoT and IoBT device limitations.

REFERENCES

[1] Defense Advances Research Projects Agency (DARPA), “Spectrum
Collaboration Challenge — Using AI to Unlock the True Potential of
the RF Spectrum,” https://archive.darpa.mil/sc2/, 2017.

[2] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple
access for heterogeneous wireless networks,” in IEEE Int’l. Conf. on
Communications (ICC), 2018.

[3] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for
the Physical Layer,” IEEE Trans on Cognitive Communications &
Networking, vol. 3, no. 4, Dec 2017.

[4] Defense Advances Research Projects Agency (DARPA),
“Radio Frequency Machine Learning Systems,”
https://www.darpa.mil/program/radio-frequency-machine-learning-
systems, 2019.

[5] F. Restuccia, S. D’Oro, A. Al-Shawabka, M. Belgiovine, L. Angioloni,
S. Ioannidis, K. Chowdhury, and T. Melodia, “DeepRadioID: Real-
Time Channel-Resilient Optimization of Deep Learning-based Radio
Fingerprinting Algorithms,” in ACM Int’l Symposium on Mobile Ad Hoc
Networking & Computing, ser. Mobihoc, 2019.

[6] M. Fadul, D. Reising, and M. Sartipi, “Identification of ofdm-based
radios under rayleigh fading using rf-dna and deep learning,” IEEE
Access, vol. 9, 2021.

[7] F. Restuccia and T. Melodia, “Polymorf: Polymorphic wireless receivers
through physical-layer deep learning,” in Proc. of the Twenty-First Int’l.
Symposium on Theory, Algorithmic Foundations, & Protocol Design for
Mobile Networks & Mobile Computing, ser. Mobihoc ’20. Association
for Computing Machinery, 2020.

[8] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical
layer communications,” IEEE Wireless Communications, vol. 26, no. 2,
2019.

[9] J. Downey, B. Hilburn, T. O’Shea, and N. West, “In the Future,
AIs—Not Humans—Will Design Our Wireless Signals,” IEEE Spectrum
Magazine, Apr 2020.

[10] L. Cameron, “Internet of Things Meets the Military and Battlefield:
Connecting Gear and Biometric Wearables for an IoMT and IoBT,”
2017. [Online]. Available: https://www.computer.org/publications/tech-
news/research/internet-of-military-battlefield-things-iomt-iobt

[11] V. Insinna, “DARPA Challenges Industry To Make Adaptive
Radios With Artificial Intelligence,” Sep 2016. [Online].
Available: https://www.defensenews.com/2016/09/08/darpa-challenges-
industry-to-make-adaptive-radios-with-artificial-intelligence/

[12] U.S. Army Research Laboratory Combat Capabilities Development
Command. Internet of battlefield things. [Online]. Avail-
able: https://www.arl.army.mil/business/collaborative-alliances/current-
cras/iobt-cra/

[13] Statista, “Internet of Things (IoT) connected devices
installed base worldwide from 2015 to 2025 (in billions),”
https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/, 2019.

[14] Government Accountability Office (GAO), “Electromagnetic Spectrum
Operations: DOD Needs to Take Action to Help Ensure Superiority,”
https://www.gao.gov/assets/gao-21-440t.pdf, Mar 2021.

[15] Y. Wei, S. Fang, X. Wang, and S. Huang, “Blind estimation of the pn
sequence of a dsss signal using a modified online unsupervised learning
machine,” Sensors, vol. 19, no. 2, 2019.

[16] I. Shakeel, “Machine learning based featureless signaling,” in IEEE
Military Communications Conf. (MILCOM), 2018.

[17] M. Abadi and D. Andersen, “Learning to protect communications with
adversarial neural cryptography,” arXiv preprint:1610.06918, 2016.

[18] T. Clancy and N. Goergen, “Security in Cognitive Radio Networks:
Threats and Mitigation,” in Int’l. Conf. on Cognitive Radio Oriented
Wireless Networks and Communications (CrownCom), 2008.

[19] T. Xie, G. Tu, C. Li, and C. Peng, “How Can IoT Services Pose New
Security Threats In Operational Cellular Networks?” IEEE Trans on
Mobile Computing, 2020.

[20] J. Vlok, “Detection of Direct Sequence Spread Spectrum Signals,” Ph.D.
dissertation, University of Tasmania, Oct. 2014.

[21] T. Kang, X. Li, C. Yu, and J. Kim, “A survey of security mechanisms
with direct sequence spread spectrum signals,” Journal of Computing
Science & Engineering, vol. 7, Sep 2013.

[22] M. Simon, J. Omura, R. Scholtz, and B. Levitt, Spread Spectrum
Communications Handbook. McGraw-Hill, Inc., 2002.

[23] R. Gold, “Optimal binary sequences for spread spectrum multiplexing
(corresp.),” IEEE Trans on Information Theory, vol. 13, no. 4, 1967.

[24] J. Rushanan, “Weil sequences: A family of binary sequences with good
correlation properties,” in IEEE Int’l. Symposium on Information Theory,
2006.

[25] ——, “The spreading and overlay codes for the l1c signal,” Navigation,
vol. 54, no. 1, 2007.

[26] T. Kasami, “Weight distribution formula for some class of cyclic codes,”
Coordinated Science Laboratory Report no. R-285, 1966.

[27] L. Welch, “Lower bounds on the maximum cross correlation of signals
(corresp.),” IEEE Trans on Information Theory, vol. 20, no. 3, 1974.

[28] S. W. Golomb and G. Gong, Signal design for good correlation:
for wireless communication, cryptography, and radar. Cambridge
University Press, 2005.

[29] K. Mourougayane, B. Amgothu, and S. Srikanth, “A robust multistage
spectrum sensing model for cognitive radio applications,” AEU - Int’l.
Journal of Electronics & Communications, vol. 110, Aug 2019.

[30] I. Shakeel, “Machine learning based featureless signaling,” in IEEE
Military Communications Conf. (MILCOM), 2018.

MILCOM 2021 - Special Session on Internet of Battlefield Things

788
Authorized licensed use limited to: Riverside Research. Downloaded on November 01,2024 at 20:49:26 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-24T14:09:12-0400
	Preflight Ticket Signature




