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Unimodular Perfect and Nearly Perfect Sequences:
A Variation of Björck’s Scheme
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Abstract— Constant Amplitude (CA), Zero Auto Correla-
tion (ZAC) sequences (or CAZAC sequences, aka perfect
sequences) have numerous applications. We generalize the
CAZAC notion to what we term as CASAC by permitting
small autocorrelations (SAC). We extend Björck’s classification
result of two-valued CAZAC sequences by providing a complete
classification of all almost 2-valued (i.e., two-valued except for
the first position which uses a third value) CASAC sequences.
While Björck’s original work dealt only with primes p, we
extend his ideas to any abelian group of order v ≡ 1
(mod 4), as opposed to restricting just to the prime fields
GF(p). Björck sequences have better ambiguity function than
Zadoff-Chu sequences, making them suitable for radar and
communications applications in the presence of high Doppler
shifts. In fact, the discrete narrow band ambiguity function has
an optimal bound in case of Björck sequences (as opposed to
Gauss sequences). A one-parameter infinite family of CASAC we
construct would have applications in Multiple-Input Multiple-
Output (MIMO) areas. Toward MIMO applications, we introduce
a performance measure we term as cross merit factor to study
cross correlation behavior, generalizing the well-known notion of
Golay Merit Factor (GMF).

Index Terms— Unimodular sequences, perfect sequences,
Legendre sequences, CAZAC sequences, Björck sequences, merit
factor, zero autocorrelation, Paley type partial difference sets.

I. INTRODUCTION

SEQUENCES, whose entries are complex unimodular
values with near perfect auto-correlation properties,

have many applications in communication systems such as
Code Division Multiple Access (CDMA) and radar systems.
Sequences and their higher dimensional counterparts (arrays)
are critical in today’s technological world where they are used
in radar, error correction, digital communication, etc. A good
treatise on sequences with good correlation properties was
written by Golomb and Gong [1].

Constant Amplitude (CA), Zero Auto Correlation (ZAC)
sequences (or CAZAC sequences) are sometimes referred to
as perfect sequences (because of the ZAC property) with unit
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magnitude (because of the CA property) [2], [3]. CAZAC
sequences have numerous applications: linear system para-
meter identification [4], [5], real-time channel evaluation [6],
synchronization, timing measurements [7], direct-sequence
spread-spectrum multiple access (DS/SSMA) and frequency
hopped spread-spectrum multiple access (FH/SSMA) [1], [8].
The study of CAZAC property originated in radar and com-
munication theory. The constant amplitude part of the property
ensures the ability to transmit signals at peak power constantly,
while the zero autocorrelation part of the property ensures
that returning radar signals do not interfere with outgoing
signals. Frank-Zadoff-Chu [9], [10], P4 [11], and Wiener
sequences [12] are three classes of sequences that are certainly
CAZAC. They belong to a class of sequences known as
chirp-like sequences [13]. CAZAC sequences are used in
4G LTE (Long Term Evolution) wireless standard [14] and
in the development of 5G wireless communication technol-
ogy [15], [16]. CAZAC sequences are important in waveform
design because of their optimal transmission efficiency and
tight time localization properties. There is an extensive lit-
erature on CAZAC sequences because of the importance of
such sequences in communications, coding theory, cryptol-
ogy, and radar (see Benedetto et al. [2], [17], and references
therein).

The work presented herein has resulted in the discovery
of new infinite sets of pairs of sequences all of whose
out-of-phase periodic auto-correlation values may be set to
an arbitrary and desirable (small) value. The motivation of
our constructions stems from the Björck sequence and we
call the constructed sequences Björck-like sequences. The
importance of Björck sequences has been stressed in [17],
where the authors show for these sequences (as opposed to
Gauss sequences) the discrete narrow band ambiguity function
has an optimal bound. In [18], it is established that Björck
sequences have better ambiguity function than Frank-Zadoff-
Chu sequences, making them suitable for radar and commu-
nications applications in the presence of high Doppler shifts.
For more details on the original Björck construction see [19],
[20], and [21].

In this paper, we employ algebraic methods to expand the
perfect Björck sequences into infinite sets of nearly-perfect
sequences.

In Section II, we provide basic definitions and algebraic
preliminaries that pertain to group rings [22], [23] and com-
binatorial structures like Paley difference sets [23] and partial
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difference sets [23]. Section III deals with our new construc-
tion methods of what we call Björck-like sequences. Section IV
shows some numerical simulations to support the optimality
of our Björck-like sequences.

We summarize our contributions below:
• We analyze, extend and characterize the construction

Björck [19] employed to construct CAZAC sequences.
While Björck’s original work dealt only with primes p,
we extend his ideas to several infinite families of groups
of order v ≡ 1 (mod 4)), where v need not be a prime
power, which yield what we term as CAZAC arrays (as
in [22]), whose one-dimensional instance would reduce
to sequences.

• We also relax ZAC to SAC (zero auto correlation to small
auto correlation which we denote by ε). In Theorems 4
and 6, we obtain full characterization in this CASAC case
(we call them Björck-like) and construct infinite families
of such nearly-perfect sequences. These might be useful
in MIMO and CDMA sort of applications.

• We show that the corresponding generalization for q ≡
3 (mod 4) does not yield any interesting sequences
(Theorems 7 and 8).

• We construct a three-valued (almost 2-valued as one
value eiθ occurs only once and the other two values e2iθ

and 1 occur equally often) CASAC. This one-parameter
infinite family (θ being the parameter) may be of interest
in MIMO type applications (e.g. massive MIMO radar
study). Prior families (like binary perfect sequences) with
perfect periodic autocorrelations contain only a handful
for a given length and their lengths also have restrictions.

• We carry out the analogous investigation that parallels
the analysis of Saffari [20] who fully settled the gen-
eral parameter characterization of two-valued CAZAC
sequences. M-sequences exist only for lengths n ≡ 3
(mod 4) and Saffari has fully solved the problem for
that case. While two-valued CAZAC sequences cannot
exist for lengths n ≡ 1 (mod 4), almost two-valued
(i.e., two-valued except for the first position which uses a
third value) Björck-like CAZACs are of interest. In The-
orems 15 and 16, we fully characterize their spectrum
under a modest hypothesis (the general problem is still
unresolved); in particular, we prove that Björck’s original
CAZAC sequences (and CASAC sequences) are the only
such objects under that hypothesis.

• We examine the Golay Merit Factor and bandwidth of
the new sequences as well as propose a measure of
performance for a set of sequences akin to the Golay
Merit Factor. This new performance measure is what
we call “cross merit factor” which enables the study
of cross correlation behaviors that are useful in MIMO
applications.

The remainder of this paper is organized as follows:
Section II provides algebraic preliminaries, Section III deals
with our new construction methods, Section IV gives computer
simulation results to support the optimality of our sequences
and introduces a new performance measure to study cross
correlation behaviors and Sections V concludes the paper and
discusses open problems for future work.

II. PRELIMINARIES

A sequence a = (ai) is called periodic with period n pro-
vided that ai = ai+n for all i. The periodic cross-correlation
function of the sequences a and b is defined by:

C(t) =
n−1∑
i=0

aib
∗
(i+t) mod n (1)

where b∗i represents the complex conjugate of bi. In this
definition, if a = b, we call it the periodic auto-correlation
function (ACF) of a. Note that the sequence C = C(t) is
also periodic with period n, so that it suffices to consider the
auto-correlation coefficients C(t) for t ∈ {0, 1, . . . , n − 1}.
The ACF measures how much the original sequence differs
from its translates. Furthermore, we now present the aperiodic
version of the ACF as well as a common measure of sequence
performance known as the Golay Merit Factor. For more
on Golay Merit Factor, refer to Schmidt’s work [24] and
references therein.

Definition 1: The aperiodic cross-correlation function of
two sequences a and b, Caper, is defined by

Caper(l) =
n−1−l∑

i=0

aib
∗
i+l

where a∗
i represents the complex conjugate of ai and 0 ≤

l < n. If a = b, then this is referred to as the aperiodic
auto-correlation function.

Definition 2: The Golay Merit Factor (GMF) of a sequence
a is defined by

GMF =
C2

aper(0)

2
∑n−1

l=1 |Caper(l)|2
.

The classical notion of bi-unimodular sequences dates back
to Gauss, but the term bi-unimodular sequence was coined by
Björck and Saffari (see [21]):

Definition 3: A bi-unimodular sequence is a unimodu-
lar finite vector, whose Discrete Fourier Transform is also
unimodular.

The following characterization of CAZAC sequences is
given as Proposition 1.2.1 in [2].

Theorem 1: A sequence S is CAZAC if and only if S is
bi-unimodular.

The Björck sequences introduced in [19], [21], and [2] are
bi-unimodular vectors of a prime length p.

For p ≡ 3 (mod 4) their coefficients are either 1 or eiθ

with θ = arccos 1−p
1+p .

For p ≡ 1 (mod 4) their coefficients are either 1, eiη,
or e−iη with η = arccos 1√

p+1 .
A more formal definition of Björck sequences is given in

the following definition.
Definition 4: Given a prime p, the function u : Zp → C

defined by u(m) = eiθp(m), 0 ≤ m ≤ p − 1, is a Björck
sequence if

For p ≡ 1 (mod 4), we have θp(m) =
(

m
p

)
arccos 1√

p+1 ;

(Here
(

m
p

)
is the classical 3-valued Legendre symbol)
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For p ≡ 3 (mod 4), we have θp(m) = arccos 1−p
1+p or 0,

depending on whether m is a quadratic non-residue modulo p
or not.

The following theorem is due to Björck, see [19] and [21].
Theorem 2: Björck sequences are CAZAC sequences.
Two-valued CAZACs have been classified by Saffari [20].

The result of Saffari states that two-valued CAZACs exist for
lengths n ≥ 3 if and only if a) n ≡ 3 (mod 4) and there exists
a Hadamard-Paley difference set in a cyclic group of order
n, or b) n ≡ 0 (mod 4) and there exists a Hadamard-Menon
difference set in a cyclic group of order n. For more difference
sets and related topics refer to [22]. In either case, explicit
formulas are provided for the construction of the CAZAC
sequence. It follows that two-valued CAZAC sequences cannot
exist for lengths n ≡ 1 (mod 4). However, note that in
this case, Björck CAZAC sequences are almost two-valued
(i.e., two-valued except for the first position which uses a third
value).

A most fertile general setting in which to study Björck
sequences and their variations is the group ring RG, where
R is a ring with unity and G is a finite abelian group. In this
paper R will usually be the field of complex numbers C, one
of its cyclotomic subfields or the ring of integers in one of
these subfields.

Definition 5: Let G be an arbitrary finite group which we
denote multiplicatively. The group ring of G over the field of
complex numbers C, denoted CG, is comprised of all formal
sums

A =
∑
g∈G

agg, ag ∈ C,

with addition defined component-wise; i.e.∑
g∈G

agg +
∑
g∈G

bgg :=
∑
g∈G

(ag + bg)g,

and multiplication defined by convolution; i.e.⎛
⎝∑

g∈G

agg

⎞
⎠
⎛
⎝∑

g∈G

bgg

⎞
⎠ :=

∑
g,h∈G

agbhgh

=
∑
g∈G

⎛
⎝∑

hk=g

ahbk

⎞
⎠ g

=
∑
g∈G

(∑
h∈G

aghbh−1

)
g.

Definition 6: If W =
∑

g∈G agg is an element of R[G] and
t is any integer, then⎛

⎝∑
g∈G

agg

⎞
⎠

(t)

=
∑
g∈G

agg
t.

A k-element subset D of a finite group G of order v is called
a (v, k, λ)-difference set if for every non-identity element
g ∈ G, there are exactly λ elements (d1, d2) ∈ D × D such
that d1d

−1
2 = g

A subset S ⊆ G can be identified with the element, denoted
again by S,

S =
∑
g∈S

g ∈ Z[G].

The following is an easy consequence of the above
definition.

Lemma 1: Let D a k-subset of an abelian group G of
order v. Then D is a (v, k, λ) difference set if and only if

DD(−1) = k − λ + λG in Z[G].

Remark: Difference sets are studied in the more general
group (not necessarily cyclic) theoretic context. Since we are
primarily dealing with sequences, we restrict our attention to
cyclic groups Zv . We use the term “array”, when the group in
question is non-cyclic. For more on these and related studies
that pertain to sequences and arrays and their interplay with
combinatorial designs, refer to the survey article [22].

Example 1 (Hadamard-Paley Difference Set): Let q be a
prime power and q ≡ 3 (mod 4). Let GF (q) denote the finite
field with q elements and α be a primitive element of GF (q).
Define: {

S = {α2i|i = 0, 1, . . . , q−3
2 }

N = {α2j+1|j = 0, 1, . . . , q−3
2 }

i.e. S and N consist precisely of the square and non-square
elements of GF (q) \ {0}. Then S and N are themselves
difference sets in the group G = (GF (q), +) with parameters
(v, k, λ) = (q, q−1

2 , q−3
4 ). Hence the following equations hold

in the group ring Z[G]:

SS(−1) = NN (−1) =
(

q + 1
4

)
+
(

q − 3
4

)
G

N = S(−1)

S = N (−1)

1 + S + N = G

The next example gives rise to the so called partial differ-
ence set. For more on partial difference sets, refer to [23].

Definition 7: Let G be a multiplicative group of order v.
A subset D ⊆ G of size k is said to be a (v, k, λ, μ) partial
difference set (PDS) in G if

1) 1 /∈ D
2) D = D(−1)

3) DD(−1) = D2 = k + λD + μ(G − D − 1) in ZG.
Example 2: Paley Partial Difference Set for prime power

q ≡ 1 (mod 4)
Let q be a prime power, q ≡ 1 (mod 4). Let GF (q) denote

the finite field with q elements. Fix a primitive element α of
GF (q) and define:{

S = {α2i|i = 0, 1, . . . , q−3
2 }

N = {α2j+1|j = 0, 1, . . . , q−3
2 }.

Thus, S and N consist precisely of the square and non-square
elements of GF (q) \ {0}. It is well known that S and N
are themselves partial difference sets in the group G =
(GF (q), +) with parameters (v, k, λ, μ) = (q, q−1

2 , q−5
4 , q−1

4 ).
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Lemma 2: Let q be a prime power satisfying q ≡ 3(mod4).
Then SN (−1) =

(
q+1
4

)
G − ( q+1

4

)− S.
Proof: By Equation (2), SN (−1) = SS. Further, SS =

S(G−N−1) by Equation (2) and N = S(−1) by Equation (2).
Simple calculation using these gives the result. �

In a similar manner, we obtain:
Lemma 3: Let q be a prime power, where q ≡ 3 (mod 4).

Then S(−1)N =
(

q+1
4

)
G − ( q+1

4

)− N .
Analogous result for q ≡ 1 (mod 4) is given below, without

proof.
Lemma 4: Let q be a prime power with q ≡ 1 (mod 4).

Then SN =
(

q−1
4

)
G − ( q−1

4

)
.

Remark: Though Example 2 and Lemma 4 are stated only
for GF (q), the performed calculations are only based on
parameters (without the need to allude to any combinatorial
designs) and hence work for all PDS with Paley parameters
(v, v−1

2 , v−5
4 , v−1

4 ) in any abelian group of order v. We shall
exploit this generalization in Section III-A in conjunction with
Theorem 3 and in Section III-E.

More on the Paley sequences can be found in [25]. The main
focus of this paper, the Björck sequence/array, is a complex
valued, prime power length q ≡ 1 (mod 4), sequence/array
whose auto-correlation is constant. If we let B represent the
Björck sequence/array, then the sequence/array B itself is
defined as

B = 1 + αS + ᾱN (2)

for some complex number α and its complex conjugate ᾱ.
The sets S and N correspond to the non-zero square and
non-square elements of GF (q) respectively. Definition 4 and
Theorem 2 yield the following facts: The value of α is given
as

α =
1√

q + 1
+ i

√
q + 2

√
q√

q + 1
(3)

and can be shown to be both unimodular and provide a perfect
periodic auto-correlation function satisfying

BB(−1) = q. (4)

More on the Björck sequence can be found in [19], [20],
and [21].

III. NEW FAMILIES OF BJÖRCK-LIKE SEQUENCES

In this section we dissect and analyze the importance of the
unimodularity of α (i.e. |α| = 1 ) and attempt to generalize
the notion of Björck sequence.

Throughout this section, we shall let q denote a prime
power.

A. More Perfect Sequences Utilizing Other Values for α

In Theorem 3 below, we show that Björck’s construction for
primes p with p ≡ 1 (mod 4) would work for only two sets
of parameters η: one given in Definition 4 above and another
when η = arccos −1√

p−1 . We actually prove this result for all
prime powers q by working in GF (q) and the resulting higher
dimensional arrays could hence be termed as Björck arrays
as in the terminology of [22].

As a first step, we ask ourselves if other values for α exist
which will hold the perfect property of the Björck sequence
(Equation 4) beyond the canonical one given in Equation 3.
The result of this analysis provides a second value for α and
is described next.

Theorem 3: Let B = 1 + αS + ᾱN with |α| = 1 be the
Björck sequence, where the sets S and N are respectively
the square and non-square elements of GF (q) with q ≡ 1
(mod 4). Then only the following two constants

α =
1√

q + 1
+ i

√
q + 2

√
q√

q + 1

and

α =
−1√
q − 1

+ i

√
q − 2

√
q√

q − 1

will provide perfect periodic auto-correlations for the sequence
B; i.e. BB(−1) = q.

Proof: Let B = 1 + αS + ᾱN , then the periodic auto-
correlation function can be calculated, explicitly, by

BB(−1) =(1 + αS + ᾱN)(1 + αS + ᾱN)(−1)

=(1 + αS + ᾱN)(1 + αS + ᾱN)
=(1 + αS + ᾱN)(1 + ᾱS + αN)
=1 + ᾱS + αN + αS + S2 + α2SN + ᾱN

+ ᾱ2SN + N2.

Next, we use the well-known properties of the difference sets
S and N which give the following substitutions for S2, N2,
and SN . Note that G − 1 = S + N .⎧⎪⎨

⎪⎩
S2 = q−1

2 +
(

q−5
4

)
S +

(
q−1
4

)
N

N2 = q−1
2 +

(
q−5
4

)
N +

(
q−1
4

)
S

SN =
(

q−1
4

)
(G − 1).

(5)

Substituting these three expressions into BB(−1) and simpli-
fying yield

BB(−1) = q +
(

ᾱ + α +
2q − 6

4
+
(

q − 1
4

)
(ᾱ2 + α2)

)
(S + N).

For this sequence to be perfect, we require BB(−1) = q
implying that the coefficient of S+N is 0. Hence we continue
by solving

ᾱ + α +
2q − 6

4
+
(

q − 1
4

)
(ᾱ2 + α2) = 0 (6)

under the constraint that |α| = 1. We let β = α + ᾱ. This
allows for Equation 6 to be transformed into standard quadratic
form in β by (

q − 1
4

)
β2 + β − 1 =0.

This is now solvable for β with the quadratic formula yielding
the two solutions

β =
{

2√
q + 1

,
−2√
q − 1

}
.
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Now, with the knowledge of β, we can solve for α as β =
α + ᾱ. This is equivalent to β = α + 1

α and is now quadratic
in α. Again, using the quadratic formula gives us the desired
result. �

As explained in Section II, a sequence (also an array) can
be regarded as a group ring element. Two group ring elements
are equivalent if and only if one can be obtained from the
other by some combination of group automorphism, group
translation and automorphism of the coefficient ring. Two
sequences/arrays are equivalent if their corresponding group
elements are; else they are considered inequivalent.

This section shows that there exists a pair of inequivalent
Björck sequences which achieve perfect auto-correlations with
the coefficient parameter satisfying |α| = 1.

Remark: Since Example 2 and Lemma 4 work for all PDS
with Paley parameters (v, v−1

2 , v−5
4 , v−1

4 ) and the performed
calculations in Theorem 3 are only based on parameters, the
stated conclusions hold true for all PDS with the aforemen-
tioned Paley parameters in any abelian group of order v with
v ≡ 1 (mod 4).

B. Björck-Like Sequences With Constant Periodic
Auto-Correlations

In this section, we investigate a relaxing of the perfect
condition of the Björck sequence. That is, we consider what
happens if we allow for the auto-correlation to be any constant,
say ε, instead of forcing ε = 0 as before. The Björck-like
sequence is constructed in the typical way,

B = 1 + αS + ᾱN

and |α| = 1, but now with a new right hand side, the periodic
auto-correlation, given by

BB(−1) = q + ε(G − 1).

While we can show that the parameter ε may be chosen
arbitrarily, except with certain restrictions given in Theo-
rem 6, we will proceed under the assumption that small auto-
correlation values are desirable and emphasize the particular
case when |ε| < 1. We now state, without proof, the following
generalization of the previous theorem which dealt with the
special case ε = 0. We single out by separating these two
results due to their applications.

Theorem 4: A pair of Björck-like sequences of length q,
with q ≡ 1 (mod 4), exists such that for any ε and the
sequence B = 1+αS+ᾱN satisfying BB(−1) = q+ε(G−1),
exists if and only if

α =
β ±

√
β2 − 4
2

and

β =
−2 ± 2

√
q(1 + ε) − ε

q − 1
.

Remark: Since Example 2 and Lemma 4 work for all PDS
with Paley parameters (v, v−1

2 , v−5
4 , v−1

4 ) and the performed
calculations in Theorem 4 are only based on parameters, the

stated conclusions hold true for all PDS with the aforemen-
tioned Paley parameters in any abelian group of order v with
v ≡ 1 (mod 4).

We now complete this section with two subsections. First,
we demonstrate that we can optimize over the parameter ε to
find the sequence pairs which minimize the bandwidth (phase
angle) between them and second find necessary and sufficient
conditions on sequence length q and parameter ε which must
be satisfied for these Björck-like sequence pairs to exist.

1) Optimizing the Choice of ε by Bandwidth: The band-
width of a signal (sequence) is proportional to the phase of
its entry α = x + iy, for x, y ∈ R, as the two entries in the
sequence B are either α or its conjugate whose phase angle is
equal but opposite to α. The phase angle of α is defined to be
θ(ε) = arctan y

x and we consider only small auto-correlation
values for this analysis. That is, we assume |ε| ≤ 1. First,
we must get the correct form of the phase angle.

Corollary 1: The phase angle of α = x + iy is given by

arctan y
x = arctan

√
4−β2

β .
Proof: To show this, we note that |β| ≤ 2 where β =

−2±2
√

q(1+ε)−ε

q−1 . (This follows easily using
√

q(1 + ε) − ε ≤
(2q − 1) for ε ∈ [−1, 1]). Hence we can re-write α as

α =
β ± i

√
4 − β2

2
.

Thus we have that the phase angle of α is arctan
√

4−β2

β . �
Now that we have an expression for the phase angle of the

signal (sequence), we can proceed by minimizing its value.
As arctan is an increasing function, this is equivalent to

minimizing its argument which we call Z(ε) =
√

4−β2

β . Using
elementary calculus with some tedious calculations, we obtain
the following theorem - we state it without proof.

Theorem 5: The bandwidth (phase angle) of the Björck-like
sequence is minimized when ε = 1.

2) Restrictions on the Length q and Parameter ε for Björck-
Like Sequences: During numerical studies of these sequences
it was noticed that not any combination of sequence length,
q, and parameter ε were sufficient to guarantee a Björck-like
sequence. Here we investigate the necessary and sufficient
conditions for which these sequences exist.

Theorem 6: For a Björck-like sequence to exist with
length q, with q ≡ 1 (mod 4), and correlation parameter
ε ∈ [−1, 1], the following four conditions are necessary and
sufficient as a whole:

1) q ≥ ε
2) q(1 + ε) − ε ≥ 0
3) 2 − q ≤√q(1 + ε) − ε ≤ q
4) 2 − q ≤ −√q(1 + ε) − ε ≤ q

Proof: Let χ be a non-principle character of the cyclic
group G. From the group ring equation, BB(−1) = q + ε(G−
1), and utilizing that |α| = |x + iy| = x2 + y2 = 1, we find
that

χ(BB(−1)) =χ(q + ε(G − 1))

‖1 + α
−1 +

√
q

2
+ ᾱ

−1 −√
q

2
‖2 =q − ε

from which we get
(q − 1)x2 + 2x − 1 − ε =0

Authorized licensed use limited to: Riverside Research. Downloaded on November 01,2024 at 20:28:02 UTC from IEEE Xplore.  Restrictions apply. 



2696 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

which can be solved for x by the quadratic formula giving

x =
−1 ±√q(1 + ε) − ε

q − 1
.

The first two conditions come from the following arguments:
First, q− ε is a sum of two squares thus q− ε ≥ 0 and second,
the values of x and y are both real numbers so the discriminant
must satisfy q(1 + ε) − ε ≥ 0. The last two conditions come
from that |x| ≤ 1 as otherwise |α| � 1. Since |x| ≤ 1, then

−1 ≤ −1 ±√q(1 + ε) − ε

q − 1
≤ 1

which upon rewriting gives the last two conditions as

2 − q ≤ ±
√

q(1 + ε) − ε ≤ q.

This completes the proof of necessity. Sufficiency follows from
the construction provided in Theorem 4. �

C. The Case of Björck-Like Sequences of Length
q ≡ 3 (mod 4)

In this section we look at the case of the Björck-like
sequence but for lengths q ≡ 3 (mod 4). We first examine
B = 1+αS + ᾱN followed by the case of B = i+αS + ᾱN .

Theorem 7: For length q ≡ 3 (mod 4), the only Björck-
like sequence, B = 1 + αS + ᾱN , with constant periodic
auto-correlation is when α = ±1.

Proof: Let B = 1 + αS + ᾱN be the sequence for
length q ≡ 3 (mod 4). Then we continue by expanding and
simplifying the expression for the periodic auto-correlation
BB(−1).

BB(−1) =(1 + αS + ᾱN)(1 + αS + ᾱN)(−1)

=q +
(

2α +
q − 3

2
+

q − 3
4

α2 +
q + 1

4
ᾱ2

)
S

+
(

2ᾱ +
q − 3

2
+

q + 1
4

α2 +
q − 3

4
ᾱ2

)
N.

We now use the fact that the coefficient of S and N must be
equal and obtain (after some elementaty algebra):

2α − α2 = 2ᾱ − ᾱ2

Now, we write α = x + iy and use |α| = 1 to obtain

y − xy = −y + xy

If y = 0 then α = x = ±1 by the assumption |α| = 1 or
otherwise 1 − x = −1 + x giving x = 1 and y 
= 0 which
is a contradiction to the unimodularity of α. Thus, the only
solution is α = ±1. �

Aling the same lines of the above result, we can prove the
following:

Theorem 8: For length q ≡ 3 (mod 4), the only Björck-
like sequence, B = i + αS + ᾱN , with constant periodic
auto-correlation is when α = ±1.

We have shown with the two previous theorems that the
Björck-like sequences of length q ≡ 3 (mod 4) are not as
interesting as the rich class of sequences which form from the
q ≡ 1 (mod 4) lengths.

D. A New Björck-Like Vari-Angular Sequence of Length
q ≡ 1 (mod 4)

Here we examine a unimodular three-valued Björck-like
sequence of the form

B = eiθ + αS + N

which has constant periodic auto-correlations. We will show
that the parameter θ is free to vary but can be optimized to
minimize the value of the correlations.

Theorem 9: The three-valued unimodular sequence B =
eiθ + αS + N of length q ≡ 1 (mod 4) has constant periodic
auto-correlations when α = 1 or e2iθ .

Proof: Let B = eiθ + αS + N of length q ≡ 1 (mod 4).
Then the periodic auto-correlation function can be computed
as

BB(−1) =
(
eiθ + αS + N

) (
eiθ + αS + N

)(−1)

=q +
(

ᾱeiθ + αe−iθ + (α + ᾱ)
q − 1

4
+

q − 3
2

)
S

+
(

eiθ + e−iθ + (α + ᾱ)
q − 1

4
+

q − 3
2

)
N.

Now, we wish for the auto-correlation to be constant so we
set the coefficients of S and N equal to one another and solve
for α by first writing it in quadratic form.

ᾱeiθ + αe−iθ + (α + ᾱ)
q − 1

4
+

q − 3
2

= eiθ + e−iθ + (α + ᾱ)
q − 1

4
+

q − 3
2

α2 − α
(
e2iθ + 1

)
+ e2iθ = 0.

Now, using the quadratic formula, we can solve for the two
roots of α.

α =
e2iθ + 1 ± (e2iθ − 1

)
2

giving the two roots as α = 1 or e2iθ . �
Note that in the case of α = 1 the sequence is not very

interesting. We continue by focusing on the case of α = e2iθ

giving the interesting sequence of

B = eiθ + e2iθS + N.

We wish to further examine what auto-correlation values
this sequence achieves. Using the expansion of BB(−1), the
non-identity correlations will be given by

eiθ + e−iθ + (e2iθ + e−2iθ)
q − 1

4
+

q − 3
2

which is equivalent to

2cos(θ) +
q − 1

2
cos(2θ) +

q − 3
2

after applying Euler’s identity. If we consider this a function
of θ then we may examine it for critical values. That is, let
f(θ) = 2 cos(θ)+ q−1

2 cos(2θ)+ q−3
2 and determine the critical

values from solving f ′(θ) = 0. We proceed to do just that:

f ′(θ) = − 2sin(θ) − 2(q − 1)sin(2θ)
= − 2sin(θ) − 2(q − 1)sin(θ)cos(θ)
= − 2sin(θ) (1 + (q − 1)cos(θ))
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and by setting this to 0, we find two roots for θ being when
sin(θ) = 0 or cos(θ) = −1

q−1 . If sin(θ) = 0 then we get that
θ = 0 which results in a maximal correlation as

f(θ = 0) =2cos(0) +
q − 1

2
cos(0) +

q − 3
2

=q.

On the other hand, the minimal correlation occurs when
cos(θ) = −1

q−1 when the correlations themselves are

f(θ) =2 cos(θ) +
q − 1

2
(
2cos2(θ) − 1

)
+

q − 3
2

=
−q

q − 1
.

This is the minimal value for the correlation and asymptoti-
cally, by length, approaches −1.

Remark: In Theorem 9 (for the case q ≡ 1 (mod 4)),
we obtain a three-valued (almost 2-valued as one value eiθ

occurs only once and the other two values e2iθ and 1 occur
equally often) unimodular nearly perfect family of sequences.
This one-parameter infinite family (θ being the parameter)
may be of interest in MIMO type applications. Toward that,
we shall introduce (in Section IV) a new performance measure
we term as cross merit factor which reduces to the classical
GMF when a single sequence is employed.

E. Extending Saffari’s Construction

Clever analysis of Saffari [20] fully settles the general
parameter characterization of two-valued CAZAC sequences.
We state it as a theorem:

Theorem 10 (Saffari [20]): Two-valued CAZAC sequences
exist for lengths n ≥ 3 if and only if a) n ≡ 3 (mod 4)
and there exist a Hadamard-Paley difference set of length n,
or b) n ≡ 0 (mod 4) and there exists a Hadamard-Menon
difference set of length n.

It follows that two-valued CAZAC sequences cannot exist
for lengths n ≡ 1 (mod 4). In this case, Björck CAZAC
sequences are almost two-valued. Analogous analysis to obtain
parameter characterizations for this almost two-valued case is
the task we now undertake. We wish to solve the problem of
finding abelian groups G of order v that contain a suitable
subset D such that the group ring element X = 1 + αD +
β(G − D − 1) (for suitable unimodular complex numbers α
and β) satisfies XX∗ is a constant (i.e., X gives rise to a G-
developed CAZAC and reduce to CAZAC sequences when G
is cyclic). This problem, in its full generality, seems a bit too
hard. With an additional modest assumption when β = ᾱ,
we are able to provide a very satisfactory solution which,
in spirit, resembles the aforementioned celebrated result of
Saffari (Theorem 10 above).

We require some ingredients from the theory of PDS. PDS
in abelian groups G have been thoroughly studied; see [23]
for a survey of older results and [26], [27], [28], [29], [30],
[31], [32], [33] (and references therein) for a number of very
recent results.

Parameters (v, k, λ, μ) of PDS satisfying β = λ − μ =
−1 have been characterized in the following theorem using

well-known equivalence of PDSs and strongly regular Caley
graphs.

Theorem 11: [34], Let Γ be a strongly regular Cayley
graph based on an abelian group G with parameters (v, k, λ, μ)
satisfying β = λ − μ = −1. Then, up to complementation, Γ
is either: i) of Paley type, i.e., it has the parameters of the type
(v, v−1

2 , v−5
4 , v−1

4 ); or ii) it has parameters (243, 22, 1, 2).
Theorem 12: [23], If G is cyclic of order v ≡ 1 (mod 4),

then G contains a Paley PDS D if and only if v is prime and
D is the set of quadratic residues modulo p (i.e., D is the
classical Paley PDS).

Theorem 13: [31], Let n be a positive odd number with
n > 1. Then there is a Paley type partial difference set in a
group of order n4 and 9n4.

Theorem 14: [33], Let v be an odd positive integer > 1.
Then there exists a Paley type PDS in some abelian group
G of order v if and only if v is a prime power and v ≡ 1
(mod 4), or v = n4 or 9n4, which n > 1 an odd positive
integer.

We state our result now:
Theorem 15: 1) Almost two valued CAZAC sequences

X = 1 + αD + β(G − D − 1) with β = ᾱ exist in an
abelian group G of order v if and only if v ≡ 1 (mod 4)
and D is a partial difference set in G with Paley type
parameters (v, v−1

2 , v−5
4 , v−1

4 ), and hence v is a prime
power and v ≡ 1 (mod 4), or v = n4 or 9n4, with
n > 1 an odd positive integer.

2) The only permissible values of α are those given in
Theorem 3.

3) Furthermore, if G is cyclic, then v must be a prime (call
it p) and D must be the classical Paley PDS (consist-
ing of quadratic residues mod p), whence our almost
two-valued CAZAC sequences X must be precisely
Björck’s original sequences characterized in Theorem 3.

Proof: [Proof of Theorem 15] Let G be an abelian group
of order v and D a subset of G of size k. Let α be a
unimodular complex number. We wish to investigate the group
ring element X = 1+αD+ ᾱ(G−D−1) that satisfies XX∗

is a constant. Rewriting X = (1 − ᾱ) + (α − ᾱ)D + ᾱG, we
have X∗ = (1−α)+ (ᾱ−α)D(−1) +αG. Simple calculation
now yields:

XX∗ = (1 − α)(1 − ᾱ) + (1 − ᾱ)(ᾱ − α)D(−1)

+ (1 − α)(α − ᾱ)D − (α − ᾱ)2DD(−1) + γG (7)

where γ = (α − 1) + (α2 − 1)k + (ᾱ − 1) + (ᾱ2 − 1)k + v.
Recall our hypothesis that XX∗ is a constant. We then

claim that D = D(−1) (i.e., D is reversible, meaning closed
under inversion). To establish this claim, we proceed via
contradiction. Denial of D = D(−1) would imply the existence
of two elements g and h in G such that: g is in D but not
in D(−1) and h is in D(−1) but not in D. Let Xg and Xh

denote the respective coefficient of g and h of the RHS of
equation (7) above.

Then Xg is one of two possible values: (1−α)(α− ᾱ)+ γ
or (1 − α)(α − ᾱ) + γ − (α − ᾱ)2.

Likewise Xh takes on one of two possible values: (1 −
ᾱ)(ᾱ − α) + γ or (1 − ᾱ)(ᾱ − α) + γ − (α − ᾱ)2.
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Since XX∗ is a constant, (7) implies that Xg = Xh.
Straightforward analysis of each of the four possible cases
yields the constraint that α = 1, showing X is not almost
two-valued, contrary to the hypothesis. This establishes the
claim that D = D(−1).

Using the info D = D(−1) in (7), we obtain:

XX∗ = (1 − α)(1 − ᾱ)+((1−ᾱ)(ᾱ−α)+(1− α)(α−ᾱ))D

− (α − ᾱ)2DD(−1) + γG (8)

= (1 − α)(1 − ᾱ)-(α − ᾱ)2(D + DD(−1)) + γG

(9)

Since XX∗ is a constant, all the coefficients of (non-
identity) elements of G must be the same on the RHS
of (9), hence for the group ring element D + DD(−1),
i.e., D + DD(−1) = a + bG for some integers a and b.
This, in conjunction with D = D(−1) implies that D(2) =
a + bG − D in the group ring Z[G]. This precisely means
that D is a PDS in G with parameters (v, k, λ, μ) satisfying
β = λ − μ = −1. Appealing to Theorems 11 and 14,
our proof of Theorem 15, part 1) is now complete, noting
that the sporadic case (243, 22, 1, 2) does not yield almost
two-valued CAZAC sequences. Simple triangle inequality on
the coefficients on the RHS of (9) would show that zero
autocorrelation is impossible. To prove part 2), we compute
the constant coefficient of non-identity elements (i.e., out-of-
phase autocorrelation coefficients of X) on the RHS of (9)
above and set it to zero. This coincides with (6) of Theorem 3,
completing the proof of part 2). Part 3) is immediate from
Theorem 12. �

Adapting the proof of Theorem 15, we can now easily char-
acterize almost two valued CASACs with similar parameters
along the same vein.

Theorem 16: 1) Almost two-valued CASAC sequences
X = 1 + αD + β(G − D − 1) with β = ᾱ exists in an
abelian group G of order v if and only if v ≡ 1 (mod 4)
and D is a partial difference set in G with Paley type
parameters (v, v−1

2 , v−5
4 , v−1

4 ), and hence v is a prime
power and v ≡ 1 (mod 4), or v = n4 or 9n4, with
n > 1 an odd positive integer.

2) The only permissible values of α are those given in
Theorem 4.

3) Furthermore, if G is cyclic, then v must be a prime (call
it p) and D must be the classical Paley PDS (consist-
ing of quadratic residues mod p), whence our almost
two-valued CASAC sequences X must be precisely
Björck’s original sequences characterized in Theorem 4.

Proof: Identical to Proof of Theorem 15 – the only
difference coming in adapting the proofs of parts 2) and
3) toward finding the two feasible values of α when we
require the out-of-phase autocorrelation values take on the
constant ε. �

IV. NUMERICAL MEASURES OF PERFORMANCE

FOR SEQUENCE SETS

A. The Golay Merit Factor

Here we examine the Golay Merit Factors for the Björck-
like sequences. We note that asymptotically they appear to

Fig. 1. Golay Merit Factors of the Björck-like sequences by choice of ε.

reach a GMF ≈ 6 which is not surprising as the sequences
are similar in structure to the Paley sequence type. Figure 1
does indicate that larger GMF s may favor smaller ε values.

B. The Cross Merit Factor

In the effort to find optimal sets of sequences for use, for
example in MIMO radar, we propose a measure derived from
the Golay Merit Factor which is commonly used to measure
the performance of a single sequence. The measure we call
Cross Merit Factor, XMF , satisfies the following:

1) Gives a numerical measure of performance for any
number of sequences, N > 0, each of length L > 0.

2) Reduces to the common Golay Merit Factor when
N = 1.

3) Returns a set of N sequence shifts, one per input
sequence, to indicate the optimal set.

4) The optimal set will be a set of sequences providing
maximal GMFs and minimal cross-correlation values.

The proposed measure is defined using the aperiodic cross-
correlation between any two sequences in the set. We define
the aperiodic cross-correlation between two sequences, S1 and
S2, to be

X(S1, S2, t) =
L−t−1∑

i=0

S1(i)S∗
2 (i + t) for t = 0, 1, . . . , L − 1.

The set of equal length sequences, which are the input to
the XMF , is represented by

Γ =

⎡
⎢⎣

S1(0) S1(1) · · · S1(L − 1)
...

...
SN (0) SN (1) · · · SN (L − 1)

⎤
⎥⎦ .

A computer algorithm, developed in MATLAB, examines all
possible cyclic shifts of the sequences in Γ, denoted by the
integers φ(Γ) = {φ1, φ2, · · · , φN}. The output of the code is
the set of best possible shifts which maximize XMF (Γ).

Note that in the case of a single sequence, N = 1,
of length L, then

Γ =
[
S1(0) S1(1) · · · S1(L − 1)

]
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Fig. 2. Cross Merit Factors of all shifts of the Björck-like sequences for
ε = −1.

Fig. 3. Cross Merit Factors of all shifts of the Björck-like sequences for
ε = 0.

and the XMF collapses down to the GMF . We skip the
proof of this assertion.

We now discuss a few numerical testings we performed on
Cross Merit Factor. First we attempt to show that optimizing
the XMF is a reasonable and possible action for a set of
sequences. For the Björck-like sequences we compute all
possible XMF for ε ∈ {−1, 0, 1} to examine the distribution
of values (to visually see if optimization is reasonable). The
next three Figures, Figures 2, 3, and 4, show that a wide variety
of XMF exist implying that an optimal set of sequences can
be found.

Fig. 4. Cross Merit Factors of all shifts of the Björck-like sequences for
ε = 1.

Fig. 5. Cross Merit Factors plotted versus the maximum sidelobe value.

Further evidence suggests that our algorithm’s maximizing
of the XMF is also able to minimize the magnitude of the side
lobes of the sequence set. Based on the numerical evidence
in Figure 5, we can see that for a fixed sequence length
the maximal XMF tends to occur alongside the minimal
maximum sidelobe magnitudes.

C. Testing of the Phase Angle Bandwidth

By computing the phase angle of α for various Björck-like
sequences, we show numerically that the optimum (minimal)
bandwidth is achieved when ε is largest. In this case, restricting
our ε in [−1, 1], the best bandwidth is given when ε = 1.

Definition 8: The Cross Merit Factor for a set of N sequences of length L, represented by Γ, is given by

XMF (Γ)=
∑N

i=1 |X(Si, Si, 0)|2
2
(∑N

i=1

∑N
j=1,i�=j

∑L−1
t=0 |X(Si, Sj , t)|2+

∑N
i=1

∑N
j=1,i�=j

∑L−1
t=0 |X(Sj , Si, t)|2+

∑N
i=1

∑L−1
t=1 |X(Si, Si, t)|2

)
the goal of which is to find the maximal XMF .
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Fig. 6. Phase Angle of the Björck-like sequences by choice of ε.

See Figure 6 as evidence of this by looking at the top (light
blue) and bottom (dark green) curves which are associated
with ε = 1 and are furthest from 90 degrees.

V. CONCLUSION

In this paper, we have studied unimodular sequences with
constant but small (preferably zero) out-of-phase autocorrela-
tions. These so-called CAZAC or CASAC sequences that arise
via a construction of Björck have been characterized for the
two-valued and almost two-valued (i.e., two-valued except for
the first position which uses a third value) cases. The latter
is not fully solved as we could only tackle the case where
the two values used are complex conjugates. We leave the
general problem as an open question: i.e Obtain a similar
characterization as Theorems 15 and 16, without assuming
the hypothesis β = ᾱ.

We also obtain a one-parameter infinite family of CASAC
which may have applications in MIMO applications. Toward
this, we introduce a performance measure we term as cross
merit factor (XMF) to study cross correlation behavior, gener-
alizing the celebrated notion of Golay Merit Factor (GMF).
The newly introduced notion XMF is still at its infancy.
We leave further investigation of the proposed XMF metric
to future work, where we will develop a full fledged theory
akin to GMF. This will be useful in various applications such
as MIMO.
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